Toggle light / dark theme

A little more than 40 years ago – 42 years in July, to be exact – men walked on the moon for the first time. This achievement was a landmark for humanity – not only in that it demonstrated a vast technological ability but also because it was that “giant leap for mankind” – as Neil Armstrong so eloquently put it – in an eternal quest for the stars.

Most of us grew up watching the space program – the first orbiting satellites, the Apollo program, the Space Shuttle and International Space Station. We became accustomed to constant “leaps for mankind” in technological achievement. We shared in the sorrows – the Challenger explosion, the loss of Columbia high over Texas – and we shared in the numerous heroic successes of our astronauts and the scientists and engineers who formed NASA.

With the ending of the Shuttle program, many Americans are now beginning to feel that all those glory days are behind us. I’ve heard people lament the changes in direction of our policy of space exploration as though the adventure of discovery beyond the pull of Earth’s gravity is all but over.

I would like to remind you that we are not at the END of the Space Age. We are still merely at the beginning. Current circumstances – mainly economic ones – might make it seem that we are unable to advance – or that major advancements might not come in our lifetime. But there are still a lot of things going on that make me believe we are rapidly entering a new age of civilization that ultimately will take us beyond Earth and to the stars. All things considered, this new age is likely to be the kind of pivotal movement in history that occurred as Western civilization emerged from a state of decline through what became known as the Renaissance – literally the REBIRTH of civilization.

This new age we can call the Space Renaissance, because it comes at a time when humanity faces dire predicaments on Earth while possessing the technology to approach solutions through advancing into extraterrestrial space. And it will bring about vast changes in the way we think about ourselves – our science, our politics, our economics, even the social contracts that bind us together as human beings. It will alter, in fact, the way we regard mankind’s position in the universe, in much the same way as the notion of Renaissance astronomer Copernicus more than 500 years ago that the Earth revolves around the Sun.

The Space Renaissance will both create such changes and be forged by them. As ideas advance into new technology and new endeavours, those developments will spawn new ideas. This is the way humans have always advanced – and are advancing even today.

There is no question – in my mind – that we are progressing rapidly toward a time that human beings will routinely travel through extraterrestrial space – tapping resources such as energy, minerals and even water – not as an Earth civilization but as a Solar Civilization. Not everyone might agree with that assessment. Some are simply too pessimistic to believe that mankind will be able to work together long enough to make it happen before destroying our planet. Others think it is too futuristic to contemplate – especially during a time when we are faced with widespread joblessness, rising debt and mortgage foreclosures at home, along with wars and revolutions in the Middle East and Wall Street protests.

I have to remind my friends that although many of the ideas of space exploration and development seem spun from science fiction, in many respects they are not of the future but of the present. Consider this:

• Hundreds of people have already traveled in space.
• The International Space Station continues to operate, conducting experiments and research that have widespread implications not just for future space missions but also for developments here on Earth.
• Daily, we send and receive communications transmissions that are bounced off of manmade satellites.
• We have robots exploring other parts of our Solar System, including the surface of Mars, and devices such as the Hubble Space Telescope transmit images that provide ever increasing insights into the expanse of the Universe.

In short, we are already THERE – in space. And this is happening just 50 years after the first space missions that sent men into orbit. In many ways, it is akin to the explorations of the New World that occurred in the decades after Columbus first sailed across the Atlantic during the age of the first Renaissance centuries ago.

Now, in the decades ahead many more changes are sure to follow. I see it as a natural progression of human civilization, just as the exploration and development of the New World led to new nations built on new ideas of human freedom and democracy that were unprecedented in human history.

And just as developments then called for new ideas – new ways of looking at mankind and our relationship to the planet – there will be new ways of considering our relationship with other human beings today. There will be a need for unprecedented international cooperation as we advance not just on the basis of national interests but of the interests of all humanity coexisting on one planet. The old economic models that competed during the last century as Capitalism and Communism will give way to new models that rely on extensive cooperation between governments and private enterprise. In many ways, this is already happening. Consider the recent trends in the U.S. Space Program, in which greater reliance is placed on other governments and private companies to propel our astronauts to new discoveries.

And it in this latest development there are many opportunities opening up already to pave the way for the future of commercial space. This is certain to accelerate as systems that have failed in their missions to achieve human success are replaced by new efforts based on the long-term goal of protecting planet Earth while reaching beyond the confines of its gravitational pull toward other worlds. Space-based solar power is a prime example, with the potential to provide energy to Earth and habitats beyond.

So, the message I would like to share is that we are still heading out there, toward the stars. The same ambitions that drove Europeans to discover and explore new worlds, and inspired inventors like the Wright brothers to keep pressing forward until man could take flight, and pushed the United States into the space race that landed men on the moon are still with us, driving us ever onward and outward.

We are now, and will continue to be propelled by a new energy and new ideas into a new age for civilization. Another Renaissance – SPACE RENAISSANCE.

Saul Perlmutter, Brian Schmidt and Adam Riess will share the 2011 Nobel Prize in Physics.

The Nobel Prize in Physics 2011 has been awarded “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae” acknowledging the amazing discovery announced in 1998 that — based on the measured velocities of Type 1a supernovae — the rate of the universe’s expansion is increasing over time. The prize will be shared by three astronomers, now officially ‘outstanding in their field’, Saul Perlmutter of UC Berkeley, Brian P. Schmidt of the Australian National University and Adam G. Riess of Johns Hopkins University. Continue reading “Astronomers Win 2011 Nobel Prize in Physics” | >

Space is a hard sell these days. Aside from the persistent small community of die-hard space advocates and New Space entrepreneurs, the relevance of space to the society at large has generally declined since the grand achievements of the Space Race and even such great feats as the building of the ISS have garnered rather modest public attention. In recent years we have had more active astronauts than ever in history, yet few among the general public can name a single one. An appreciation of space science seems to have improved in recent years by virtue of the impressive visuals offered by orbital telescopes, space probes, and rovers. But the general public commitment to space development still dwindles in the face of mounting domestic issues. Most recently we have seen a drastic contraction of national space agencies in response to the current global economic turmoil. Programs are reduced, cut, or under looming threat. We hear pronouncements of deemphasis of costly manned space activity by the major national players in space development. The world leader in space, NASA, now drifts aimlessly, its premier launch system–controversial from the start, often dismissed as a boondoggle, and dragged along for far too long–finally succumbing to obsolescence without a replacement at-hand, leaving the agency dependent upon foreign nations and struggling for a semblance of direction and purpose. In this past few years, finding itself abandoned on both right and left sides of the political fence, it faced the very real possibility of being shut down altogether and now its partner DARPA talks of century-long space programs with no government involvement at all because the very idea of the US government having the coherence to accomplish anything that takes more than one electoral cycle to do has become implausible.

Overconfident to the extreme after recent very significant, yet still modest in the broad perspective, successes, the newest faction of the commercial space community, the New Space entrepreneurs, boast their readiness to pick up the slack, not quite cluing into the fact that the rope isn’t just dropped, it may be cut! Space industry has never been a very big industry despite the seemingly gigantic sticker prices of its hardware. The global space industry accounts for around 160 billion dollars annually. Soft drinks account for 350 billion. Coca Cola is bigger than NASA. Meanwhile, the lion’s share of commercial space service has always been for governments and the remaining largely telecommunications applications –after 50 years still the only proven way to make money in space- face slow decline as latency becomes increasingly critical to mainstream communications. The ‘grand convergence’ long anticipated in computing has now focused on the Internet which is steadily assimilating all forms of mainstream communication and media distribution. Despite a few service providers of last resort, satellites simply don’t work as a host for conventional Internet and physics precludes any solution to that. We owe recent surges in launch service demand more to war than anything else. Ultimately, we’re not looking at a privatization of national space systems. We’re looking at their outright obsolescence and an overall decline in the relevance of space activity of any sort short of science applications, which have no more need of astronauts than for manned submersibles and for the same reasons. The need for space services will not disappear but, as it stands now, has little likelihood of growth either–except on the back of war. Logically, what commercial space desperately needs is a program for the systematic cultivation of new applications the space agencies have never seriously pursued–new ways to make money there, particularly in an industrial context. And what do the mavericks of New Space have on offer in that context? Space tourism for the rich, during a time of global recession…

There is a great misconception today that the challenges of commercial space are merely technological problems waiting to be solved by that one new breakthrough propulsion technology that never materializes. But commercial air travel did not become ubiquitous by virtue of flight technology becoming miraculously cheap and powerful like microprocessors. It became ubiquitous by realizing markets of scale that supported aircraft of enormous size needing very large minimum operation economies of scale, where populations of millions in communities with well-heeled comfortable middle-classes are necessary to generate sufficient traffic to justify the existence of a single airport. A single A380 airliner costs almost as much as the development of a typical unmanned launch system. Air travel was never particularly successful in an industrial sense. Most stuff still moves around the world at the 20mph speed of ships. The New Deal and the remnant air support infrastructure of WWII were together probably more responsible for the modern airline industry than any engine or aircraft design–because they created the market. If it takes a population of millions to justify the existence of a single conventional airport for conventional airliners, what then a Pan-Am Orion?

For those who look to space as an insurance policy for life and the human civilization, this situation should be of much concern. Whether it be for averting the potential disasters of asteroid strikes or as a redoubt for some fraction of civilization in the event of any terrestrial disaster, a vast space-based infrastructure must be continually at-hand for such capability. Yet these kinds of threats do not themselves seem to have ever inspired sufficient concern in the general public or political leaders to demand such capability be established and maintained for its own sake. You cannot talk in public about such space contingencies and be taken remotely seriously. One could say we have been a bit too lucky as a civilization. There have been no small asteroid impacts in historic memory and few global existentially threatening events beyond those we human beings have created –and we’re very good at systematic denial of those. So this contingency capability relies on being incidental to other space development. That development has been inadequate for that to date, counting on future expansion that has never materialized. What then as we watch that development fizzle-out altogether? The essential cultural relevance of space development can be seen as crucial to the long-term survival of our species, and that’s in marked decline.

What happened to space? Just a generation ago this seemed to be a significant concern for the global society. Wherever you were in the world, whatever your station in life, space mattered in some way, even when the majority of activity was being pursed by just two conflicting superpower governments. In those two nations, a sense of vicarious participation in the space programs through the general contribution to national productivity spread across the society. We were all part of the space program and we all largely defined our future as a civilization–when we weren’t so scared witless as to doubt there was any–in the partial context of space development. When and why did this stop mattering to us? Can we make it matter again?

The Blessing and The Curse:

Space development owes a lot to Nikita Khrushchev. If any one man can be said to be largely responsible for the Space Age it was him–whatever we might think of his overall historic legacy. Wernher von Braun is largely responsible for the vision of space development that captivated the world at the time and, in partnership with Walt Disney, spread like a meme through the contemporary popular culture where it was echoed in countless ways in a diversity of popular media. They are why the US wound up with a civilian space program and not a ‘space force’, von Braun understanding that a strategic military imperative alone could never get us beyond Earth orbit. The movement for this civilian space program was well underway at the time and the Space Race a timely opportunity for it. But Khrushchev largely instigated the Space Race as we’ve come to understand it, set ad hoc the ground rules for the competition superpowers would engage in, and created the model of space agency process for development both major players would employ, even if supported by different infrastructures. Most importantly, he established the pursuit of specific space goals not as an extension of the arms race, as implied in the impact of Sputnik, but as a nationalist competition for geopolitical prestige through technical and industrial prowess. It was a peaceful, less dangerous, alternative to the arms race, even if the ultimate implication of this prowess in space was one of potential military might on Earth. It was a reinvention of the medieval tournament on a vastly more grand scale. And this is why, in seemingly such a short amount of time after the collapse of the Soviet Union, US and Russian space agencies could so readily become partners. There was never an animosity between these space programs and agencies, despite the bitter cultural animosity cultivated in mainstream society by Cold War propaganda. It was an attitude akin to olympic athletes.

Thus competitive nationalism proved a powerful force for driving space development. But it was ultimately an unsustainable one. At some point someone ‘won’. One could argue that the Space Race did not end with the US manned landing on the Moon but rather with the failures of the beautiful yet doomed Soviet N1 rocket. One might even say the Soviets lost the Space Race with the ouster of Khrushchev and the reestablishment of a more conservative Soviet internal order that likely contributed to the N1 failure. Apollo was doomed to a premature suspension even as the first astronauts set foot on the Moon, because without a competitor the nationalist imperative for space could not be sustained. As soon as this particular competition was over, the propaganda machine was directed elsewhere–inward against an eruption of civil unrest across the western world prompted by protracted poorly-rationalized wars, repeated political disillusionment, the subtle mass psychological effect of perpetual existential threat under the Cold War, race, class, and generational conflict, energy crisis, and the increasingly blatant excesses of corporate culture. To a certain degree, the Space Race itself had contributed to this by virtue of the change of social perspectives access to space had produced. We, for the first time as a whole global society, had seen the Earth as a whole and sensed our rather precarious position in the larger universe. This was a powerful thing. Culturally, we began to think of the world as a whole, of its systems as a whole, its resources finite and ourselves as planetary rather than state citizens. This, in particular, catalyzed a new popular international environmentalist movement of far greater scope than the conversation movements of the early 20th century.

At this time in history nationalism itself was dying in the western culture. The society now had a global, cosmopolitan, perspective. The basic belief of the public in the generally good intentions of government was lost–and remains lost. Almost no one in the world today, regardless of political alignment, now seriously believes their government has their best interests in mind, this attitude continually reinforced by scandal, war, and blatant expressions of authoritarianism and institutional violence continuing unabated to the present day. In the US nationalism was co-opted by extremist political conservatives, and thus discredited in the popular culture as a cynical tool of propaganda. (and both political parties bear equal share of the blame for that) Consequently, most everything that once served as a symbol of nationalist pride and identity in the past has become, to some degree, tainted, silly, childish, anachronistic in the manner of the weird aesthetic of a North Korean propaganda poster. And one of those symbols is the space program which, with the government abandonment of Apollo and the general public abandonment of the hopeful future envisioned by von Braun, lost its public mandate. Without that mandate NASA, in order to survive, was compelled to transform into just another state bureaucracy, ruled by the logic of a eunuch in the ancient Chinese imperial court and compelled to pander simultaneously to the absurd vanities of opposing political parties. Its programs since Apollo all reflect this kind of logic, which is why the general public often has a hard time comprehending their purpose and relevance and why they are such easy targets for accusations of folly and boondoggle. The public doesn’t understand the court games that must be played here–the very different kind of logic underlying the design of a Space Shuttle or ISS. It doesn’t have a lot to do with space. The public and the government have very different priorities for space summed up in the simple observation that while the public has always understood space as a place we intended to ultimately to go and live, government is not in the business of inventing new places for people to go and not pay taxes. Any commitment for space ever claimed by government has always been fundamentally disingenuous–a cover for another agenda that probably has nothing to do with space itself. Space agencies are stuck in the middle, at once trying to pay lip service to The Dream while ultimately beholden to the system that actually writes the checques.

This is how we have arrived at the sorry situation we find ourselves in with space development today and in order to overcome this we must seek a new basis for a mass cultural relevance to space. We must understand that the objectives we seek in space, in particular the objectives of space settlement and the establishment of the infrastructure we need to support those space-based contingencies for existential threats, cannot be rationalized entirely under the narcissistic imperatives of governments, strategic military imperatives, or the extremely narrow weltanschauung of commercial interests. This has to matter to us as a society in a very basic way. The imperative for space should be as fundamental to us as the imperative to reproduce, build careers, and build a better life. Only with such fundamental importance can space development achieve the necessary social and economic focus it needs to truly carry us to a spacefaring civilization. But on what basis this new relevance?

Six Degrees of Separation:

There is one very powerful aspect of space development that potentially links it very directly to the concerns everyday terrestrial life; the pursuit of the means to live in space essentially means the development of technology to sustainably go from dirt, rocks, and sunlight to a middle-class standard of living using systems on the scale of home appliances. What aspect of life on Earth would such capability NOT impact?

Today, the relevance of space activity is defined largely in terms of the social and economic dividends of ‘technology transfer’ characterized like a game of Six Degrees of Separation where agencies basically try to confabulate credit for every historic technical achievement short of fire and the wheel. No one really buys this anymore. Most certainly space development and science have made very great achievements but these become diluted in perceived social value when simultaneously associated with nebulous claims of connections so tenuous that even James Burke would be hard pressed to see them. The links between space activity and everyday life cannot be taken seriously when so tenuous. They must be seen as direct, immediate, and concrete.

One great opportunity for contemporary cultural relevance long overlooked by space agencies and companies alike is environmentalism. As noted earlier, our public exposure to a space perspective is one of the key factors in the creation of the environmental movement that we have today. Space science is largely responsible for our understanding of the global impact of pollution and the current understanding of Global Warming. Yet, right now, environmentalism sees space activity as nothing but pointless folly providing welfare to the military industrial complex. (even if, in reality, its fraction of contribution to the established aerospace industry would be lucky to be considered marginal) Why this disconnect? Part of this relates to environmentalism’s generally uneasy relationship to science, it’s roots in 19th century Romanticism and its fundamental opposition to Enlightenment philosophy seen as the root cause of the social and environment degradation inherent to the Industrial Revolution. Contemporary environmentalism is very willing to partner with science and exploit, for sake of its own public credibility, various science personalities where that suits its agenda. It will make heroes out of people like James Lovelock, and Jacque Cousteau. But it is just as willing to abandon science on grounds of its association with commercial technology and–getting back to those old roots–its reductionist perspectives. In their extremist factions, environmentalists today are just as anti-science as right-wing Christian fundamentalists and as doggedly Malthusianist as corporate Objectivists. But perhaps the most important reason for this disconnect is the underlying curse of the Space Age’s origins in nationalism and the relationship of space agencies to fundamentally discredited government, militaries, and the corporate military industrial complex environmentalists see as one of the greatest evils in the world today.

But this is not a perception the space agencies could not have overcome had they pursued a greater, more concerted, alignment to the pursuit of environmental science and renewable energy technology which, of necessity, it has pursued for its own in-space uses. Who understands more about renewable energy than NASA? Who has done as much research? Who else has put it to such cutting edge use? Do we not fuel rockets with hydrogen and power space stations with solar panels? These things could have been catalysts of national renewable energy infrastructure development. Yet NASA was a latecomer in the concerted practical use of solar and wind power–beaten to it by none other than the US military!–and the deployment of LEED certified facilities when it probably could have been the original authors of that LEED criteria.

Perhaps the reason for this missed opportunity is that space agencies are ultimately creatures of politics and one of the great problems we face today across the developed nations is the irrational politicization of energy technology. Through systematic political corruption by vested interests, the choice of energy technology has became a matter of political ideology. This is patently absurd. It’s like an arbitrary religious taboo against certain foods in the midst of a famine. And because space agencies are compelled to pander to the vanities of political parties, it simply never had the option to employ and promote technologies that became characterized as politically controversial. The blunder here has been in not recognizing that a public mandate is far more important to space agencies than mutual support from self-interested political leaders. With that mandate, the flow of influence is reversed and the government compelled to follow their lead. Administrators have become too comfortable playing the game by politics’ rules.

Oddly enough, space agencies have at times tried–half-heartedly and thus futilely–to promote renewable energy in a space industry context in the form of the Space Solar Power that was of much interest in the late 1970s and has seen some revival in recent years. Space Solar Power was the key rationalization for the concept of large orbital space colonies that emerged from the legendary ’77 Summer Study and epitomized in books such as Girard O’Neill’s High Frontier. The space colony was the home to the orbital workforce that would produce this vast space solar power infrastructure from lunar-sourced materials. This was a vision that briefly enjoyed popular interest world-wide–to the point where it actually became the subject of theme park attractions like Disney’s Horizons–and which space agencies totally failed to capitalize on as they continued to transform from space programs into space bureaucracies.

Emerging at the height of the ‘70s Energy Crisis, the concept of space solar power should have put space squarely into the middle of mainstream cultural concerns were it not for the problem of government politicization of energy and, even more peculiar, environmentalism’s very negative response to the concept persisting to this day. There are many open technical questions about the viability of Space Solar Power. This author is himself quite skeptical of it based on the question of power delivery beam density and rectenna area and the practical cost-performance comparison to terrestrial solar power. There is, to date, a lot of hand-waving. But this is not why environmentalism was so cold to this concept. It rejected it because the basic idea of a super-power nation and its corporate military industrial complex deploying a gigantic concentrated energy infrastructure perpetuates a model of energy economy hegemony that environmentalism’s embrace of renewables was intended to stand against. In other words, environmentalists are generally only interested in alternative energy technology that can be deployed in small scales–put on the roof of your off-grid cabin in the wilderness as a symbol of grass-roots protest against corporate fossil fuel hegemony. The problem, as environmentalism perceives it, is not just that fossil fuels pollute but that the concentrated economic power created by concentrated energy production hegemonies is a key cause of class exploitation and a root source of the inherent unsustainability in our entire industrial infrastructure. This sort of grass-roots independent energy protest was originally a necessity with wind and solar because of the refusal of industry to seriously pursue renewables development at any significant scale, forcing proponents to small independent deployment and technology demonstration and a bottom-up cultivation of demand for the technology, though the down-side of this is that it further reinforces the politicization of energy technology. For this same reason environmentalism has ignored or lambasted many other promising renewable energy technologies that happen to have large minimum economies of scale, such as OTEC. This is an issue many current proponents of Space Solar Power in the space advocacy community still fail to comprehend.

Had we put this in a different context, the outcome might have been much different. There has long been an opportunity here to frame space development in the context of a general and direct improvement of terrestrial life. An option to say–and demonstrate–that the pursuit of sustained habitation in space is simultaneously the pursuit of a better, more sustainable, life on Earth, the fulcrum of that proposition being the nature of the technologies we must develop and employ in order to live in space. Technologies the public has never been presented with much illustration/demonstration of. The lifestyle of the inhabitant of space is the most ‘green’ lifestyle one might imagine because the essential process of space habitation revolves around the cultivation of garden habitats of various kinds, life support systems that mimic the cycles of the terrestrial biome, renewable energy systems at many scales, and sophisticated miniaturized industrial technology that, deployed on Earth, would promote industrial–and incidentally economic–demassification. Space development IS a progressive movement!

This is also very important in a commercial context because it is just as critically necessary to relate commercial space activity to things that matter to the public as that is for government space activity. In fact, even more so in the sense that, in order for commercial space to be viable, it must produce products and services that relate to the needs and desires of a mainstream public. There isn’t much money to be made at the top of the pyramid. There is more money in CocaCola than in champagne. This is why a systematic pursuit of new space applications is very critical to any potential growth in commercial space–and right now that doesn’t exist.

This author is going to go out on a limb with a very controversial observation; one of the key hindrances to future economic growth in the New Space community is it’s inability to culturally align to the interest of the public and actually function as a community. It is making exactly the same mistake national space agencies have been making for decades. This at least partly relates to its association with extremist Libertarianism, a preponderance of Global Warming deniers, an indifference to environmental and social concerns, and most importantly, an inability to systematically pursue new market-relevant space applications as a cooperative community with coherent shared objectives. This is not just a matter of politics and philosophy. This is a matter of the bottom-line economic potential for the industry. The ability of the industry to realize growth and value. It’s ability to make money. If you can’t relate to the mainstream society, you don’t matter.

Right now commercial space desperately needs the kind of cross-industry coherence and cooperation that typified the computer industry of the ‘80s and ‘90s. Just like the computer, our goals in space are too complicated and technically challenging. No one company can do all we need to do in space any more than one company was capable of realizing the personal computer as we know it today. There are not enough ways to make money in space, either existing or proposed. The cooperative addressing of that issue should be the number one concern of commercial space developers. And, again, the concept of space habitation as a general goal is a potential catalyst for this focus. It reduces space activity to a specific logistical context, a specific spectrum of industrial capabilities, which can result in the identification and realization of specific products and services for the terrestrial market. It’s not all about how we get out there. It’s not about CATS. As long as there is no such thing as a generic launch capability, CATS only has any meaning in the context of specific applications. Pursuing launch capability in the absence of application development is nonsense. What ultimately matters is WHY we go out there. That’s what defines the market. We don’t have enough answers to that question.

Making it Matter:

Lets reiterate a key point; the pursuit of the means to live in space essentially means the development of technology to sustainably go from dirt, rocks, and sunlight to a middle-class standard of living using systems on the scale of home appliances. If we understand the full ramifications of this statement we see a great potential at-hand for the re-establishment of a sustainable cultural relevance for space. With this concept we can make space matter as it has never mattered to the global society before, in a very direct way that impacts every person’s life and the future of life on Earth in general. As pointed out, what would such capability not impact? What would it not improve? The public has always understood space as a place we intend to go and live. It’s space agencies’ and space industry’s inability to make sense of, and relate to, that understanding that has been its undoing. It’s not the public that’s been distracted. It’s the space community.

There is growing recognition that the Moon is the logical next step for sustainably opening space to human settlement. It is now confirmed that both lunar poles contain appreciable quantities of ice containing water and also carbon and nitrogen containing compounds. Since the Moon is always only a 3-day trip away, it easily beats low-gravity asteroids as the most economic place to mine water ice. Similarly, since the Moon has only a 3-second roundtrip communications delay, teleoperated robots could mine and process the lunar ice at a fraction of what human miners would cost. That ice, brought back to Low Earth Orbit (LEO) could establish a new space economy including on-orbit refueling, boosting large communications satellites to GEO, sending tourists around or even to the Moon, and facilitating NASAs Beyond Earth Orbit activities. So the Moon is a great place to develop economic in-space resources.

But, what does all of this do with survival?

Amongst those people who understand extinction risks to humanity, it is generally recognized that an off-Earth, self-sufficient colony would go a very long ways to ensuring the survival of humanity as a species. An orbiting colony would not be a good choice because, if the Earth’s biosphere were contaminated with an ecophage, the Earth itself would not anymore be a source of supplies, and Earth orbit contains no resources except for sunlight. Mars, an asteroid, or a distant moon could be a location for an off-Earth colony, but all of these would be considerably more expensive to establish than on the Moon. For those of us who think it prudent that we should purchase “insurance” against the extinction of humanity sooner rather than later, the least expensive location makes the most sense. So the Moon is a great place to establish a colony for the purpose of survival.

Interesting, so the Moon is the best place for both economics and survival. Perhaps the two could be combined into a single program. But, in the Age of Austerity, it is unlikely that our governments are going to fund a large new space program. So how can this be done economically?

Three of some of the most encouraging developments in space are:
- the lower launch prices that SpaceX is offering including their large Falcon Heavy,
- the success of the Commercial Orbital Transportation Service (COTS), and
- the incredibly cheap development of small lunar landers thanks to the X-Prizes.

This suggests that there is an inexpensive path to two COTS-like programs:
1) a Commercial Cis-lunar Tranportation Service and
2) a Commercial Lunar Ice Development Service

More details could be given regarding the technical details of how these programs would work but are beyond the scope of this article. Rather, let’s look at how close a lunar ice development venture get a manned base towards full self-sufficiency.

Lunar ice would give drinkable water, breathable oxygen, and the carbon and nitrogen volatiles which would be needed for growing plants. Lunar soil would provide other needed nutrients. So lunar ice mining would already be providing life support supplies greater than what a small colony would need thereby allowing for lengthy stays in an underground shelter. Solar concentrators would provide enough heat to melt regolith allowing for the production of metals, glass, fiberglass, ceramics and such.

But the Moon is a harsh environment requiring high-tech tools just to survive. But one box delivered to the surface of the Moon could provide a hundred years worth of computer chips, or cameras, or air-proof space suit liners thereby buying the colony many years to eventually develop their own technology. So, in a relatively short period of time a self-sufficient lunar colony could be established. Then provide it with deliveries of frozen embryos, seeds, eggs, DNA, and microfiche information and you have the makings for the reboot of a new civilization and biosphere eventually on Mars.

The point of this article is that on off-Earth, self-sufficient colony is not that far away and could be a relatively modest additional step for an economically viable lunar ice operation.

Hi,

My esteemed colleague the Ordinary Guy from the Brains Matter podcast and I recorded a 365 days podcast for 8 September 2011 - talking about saving the world through science education and research, as well considering issues of cheap telescopes and the George Foreman grill.

The 365 days of astronomy podcast is a not-for-profit user driven science communication initiative — in its third year now, but it may be on its last legs. If you have a burning desire to create 10 minutes of audio on a space science-related podcast, this may be your last chance.

And a big woo-hoo to the Lifeboat Foundation for a whopping $250 donation to keep the 365 days podcast going — at least for the rest of 2011.

Cheers,

Steve

(Member of the Board and Death-by-LHC skeptic)

Dear Team and readers,

I am particularly concerned about the damage we cause to the environment starting with junk in space, earth, and the ocean.

As a participant of Singularity University ’11 at NASA Ames, I am very happy to share with you my video about space debris:

I am willing to create an international organization that regulates the amount of debris starting with space. If interested, contact me.

I hope you will like it and feel free to publish the video and share it among your friends.

Yasemin

Abstract

American history teachers praise the educational value of Billy Joel’s 1980s song ‘We Didn’t Start the Fire’. His song is a homage to the 40 years of historical headlines since his birth in 1949.

Which of Joel’s headlines will be considered the most important a millennium from now?

This column discusses five of the most important, and tries to make the case that three of them will become irrelevant, while one will be remembered for as long as the human race exists (one is uncertain). The five contenders are:

The Bomb
The Pill
African Colonies
Television
Moonshot


Article

My previous column concentrated on the Hall Weather Machine[1], with a fairly technocentric focus. In contrast, this column is not technical at all, but considers the premise that if we don’t know our past, then we don’t know what our future will be.

American history teachers praise Billy Joel’s 1980s song ‘We Didn’t Start the Fire’ for its educational value. His song is a homage to the 40-years of historical headlines since his birth in 1949. Before reading further, go to http://yeli.us/Flash/Fire.html to hear it and to see the photographs that go with each phrase of the song.

Which of Joel’s headlines do you think will be most important, when considered by people a millennium from now? A thousand years is a long time.

Many of the popular figures Joel mentions from politics, entertainment, and sports have already begun to fade from living memory, so they are easy to dismiss. Similarly, which nation won which war will be remembered only by historians, though the genetic components of descendants affected by those wars will reverberate through the centuries. An interesting exercise would consider the most significant events of the eleventh century. English-speaking historians might mention the Battle of Hastings, but is Britain even a world power any longer? Where are the Byzantine, Ottoman, Toltec, and Holy Roman empires of a thousand years ago?

Note that there may be a difference between what most people 1,000 years from now will consider to be the most important and what may actually be the most important. In this case, just because the empires mentioned above are gone doesn’t necessarily mean they didn’t have a significant role in creating our present and our future — we may simply be unconscious of their effect.

I will consider a few possibilities before arguing for one headline that is certain to be remembered, rightfully so, ten thousand years from now — if not longer.


The Bomb

First, most thoughtful people would include the hydrogen-bomb. A few decades ago, almost everyone would have agreed wholeheartedly. At that time, the policy of Mutual Assured Destruction hung heavily over every life in the USSR and the United States (if not the world). With the USSR now gone, and Russia and USA not quite at each others throats, the danger from extinction via a full-out nuclear exchange may be lower. However, the danger of a nuclear attack that kills a few million people is actually more likely.

Up till now, for a nation to become a great power and thereby wield great influence, it needed the level of organization that depended on civilization. No matter how brutal their government or culture — such as Nazi Germany, Communist Soviet Union, or Ancient Rome — their organization depended on efficient education, competent administration, large-scale engineering, and the finer things in life — to motivate at least the elite. Even then, some of the benefit would trickle down as “a rising tide raises all boats”. Competent and educated slaves were a key to Roman Civilization, just as educated bureaucrats were essential to the Nazi and Soviet systems.

Now, however, we are getting into a situation in which atomic weapons give the edge to the stark-raving mad — anyone who is willing to use them. This situation could be most destructive to prosperous, open, humanistic, and civilized nations, because they may be less willing to give up their comfort and freedom to defend against this threat. It appears very likely that within a decade or less, any ragtag collection of pip-squeak lunatics will be able to level the greatest city on Earth, even if it is defended by the world’s strongest army. This is because the advances in nuclear enrichment technology (along with all technology) will make it easier for pip-squeak lunatics to acquire or manufacture nuclear bombs.

That being said, however, it is also true that really advanced technology — specifically privacy-invasive information technology, perhaps in the form of throwaway supercomputers in a massive network of dustcams — might stop the pip-squeak lunatics before they can build and deploy their nuclear bombs.

In addition, another decade of technological development will result in nanobots. By the way, this isn’t just my prediction (the defense of which is a subject of a future column), but also the opinion of inventive dreamers such as Raymond Kurzweil, and of conservative achievers such as Lockheed executives. The development of nanobots means that cellular repair of radiation damage may also become possible (though the problems of controlling trillions of nanobots and of how to detect and repair radiation damage are additional separate and very difficult engineering and biological issues). Michael Flynn examined some of the nuclear strategic issues of this nanotech application in his short story “Washer at the Ford”.[2]

The problem is that there may be a five year window during which our only defense against nuclear-bomb-wielding pip-squeak lunatics will be privacy-invasive information technology, run by the FBI, NSA, and CIA, and their counterparts around the world. Yes, you should be worried, but probably not for the reasons you may think. The danger is not as much that these government agencies may infringe on your rights, but that the very nature of their jobs means that they won’t be able to apply Kranstowitz’s weapon of openness[3] against those who want us dead. To make matters worse, the U.S. intelligence agencies will likely follow the complex laws[3] that protect the privacy of U.S. persons[4] — to the exclusion of catching the nuclear lunatics. This is one reason that FBI, NSA, and CIA directors get new gray hairs every night.

Another problem is that the pip-squeak lunatics will also be able to buy cheap, privacy-invasive information (and other) technologies. Petro-dollars, peasant-made knickknacks, and mining rights have given ethically-challenged individuals in third-world countries astonishing wealth. Many of the world’s richest men live in the world’s poorer countries.[5] They have also learned cruel and clever means by which to keep their peasants down. The question is whether or not they can run the expensive technology they bought with their wealth and power. Buying cheap technology is one thing, but controlling it requires skilled people, and skilled people are more difficult to control. Can the dictators keep a small cadre of trusty elites to run the technology? North Korea and Iran are interesting (and rather scary) test cases at the moment.

Another wild card is that while some dictatorships have become more totalitarian, there comes a point at which the downtrodden peasants (and students, and factory workers, and shopkeepers) don’t have anything to lose but their miserable lives. Meanwhile, totalitarian governments can’t keep up with technology as quickly as free ones can. This is when the system collapses of its own weight, and that is what happened to the USSR. The cell phone, Facebook, and Twitter-fed revolutions in Egypt, Libya, Syria, and elsewhere also seem to prove this point. Thus far, the Chinese leaders have been smart enough to adapt their economy without adapting their government. The jury is still out as to what will happen to them next (it may not be pretty for us if it ends badly, and there are many ways it can end badly).

Another wild card to consider is that most of the existing nuclear warheads are in the United States, Russia, and China. Americans conveniently forget, but non-Americans are very aware that the United States is (thus far) the only nation that has actually used an atomic bomb to kill people. On the other hand, America doesn’t have highly corrupt officials in charge of our nuclear arsenal (Pakistan), nor is it controlled by a near-dictator (Russia), nor by a totalitarian crazed nut-job (North Korea). In addition, a number of important Japanese leaders have publicly said that that controversial decision to bomb Hiroshima and Nagasaki was the correct one–“It could not be helped.“[6] A similar case might be made for Israel, which is surrounded by overwhelming numbers of Arab nations. Given the tensions in the area, a preemptive strike by Israel seems possible, if not likely. The important question then becomes: Under what grounds, if any, could such usage be justified? Of course, Iranian and other Arab leaders have often called for the total destruction of Israel, and eventually one of them may be willing to try it. On what grounds could they be justified?

Another issue is that once we lose New York or some other major city, Americans will accept any solution — including a totalitarian police state. So will the people of other democratic republics if they lose a major city to nuclear terrorists. But the solution is not necessarily a police state. David Brin has answered the “who guards the guardians” question with a clever answer: “We all do.” Over-simplified, his solution is to kiss most of your privacy goodbye. Either that or kiss your life, your liberty, and property, and your privacy all goodbye. Brin proposes that we should all submit to being on camera most of the time — as long as the camera essentially points both ways so we know who is watching us — i.e. the police, our neighbors, the pervert three blocks away, and our governments will know that we are watching them too. We must all shoulder the responsibility of policing our neighborhoods and our governments. The world will be like big village in which everyone knows everyone else’s business, but it’s OK because we are all accountable for our actions. Given the fact that human beings only behave when held accountable, it is the only real solution.[7]

Some may think it naive to expect that governments would ever allow their citizens to observe them in return for their observing us. On the other hand, between the increasing calls for government transparency, and the fact that even the chief of the IMF can be taken down by an lowly maid (with the help of the rule of law), there is hope. Not only that, but many of us have already given away much of our privacy on Facebook and YouTube. Don’t worry about it. Maybe I’m still a wide-eyed optimist, but look at the fall of the USSR empire. Nobody with two brain cells to rub together could have possibly predicted that it could have been so bloodless.

DARPA will certainly look for technological answers for nuclear bomb-related problems such as the nightmare of screening shipping containers. They will probably find some solutions, but during the critical transition phase towards productive nanosystems, will they be able to make those solutions affordable?

One nanotech solution to stopping nuclear bombs that are hidden in shipping containers is to stop all physical shipping altogether and just trade files over the internet, printing whatever you want on our desktops (BTW, you can build a very large printer in two steps). Our only problem then would be keeping our computer virus detectors up to date so that we don’t print something nasty.

To summarize, if anybody is around 1,000 years from now, then the nuclear bomb will not be considered an important issue.


The Pill

The second historically consequential development in the past 50 years that many people will propose as significant is the contraceptive pill.

Some claim that the Pill is necessary because we have a population problem. When I was in college in the 1970’s, it was “proven” to me, with the aid of computer models, that overpopulation was going to be the reason we were going to have food riots in the United States by 1985. So naturally, I’m as skeptical about overpopulation as I am about the imminent rapture. Everyone probably agrees that overpopulation results when the population exceeds the sustainable carrying capacity of the environment. But what determines that capacity? Technology multiplies it while ignorance, injustice, and war decrease it. On Earth today, there is currently no correlation between standard of living and population density.[8]

That being said, in a closed system, unlimited human population growth could result in a situation worse than simple human extinction. Natural ecosystems have population boom/crash cycles all the time, but other species don’t have access to nuclear bombs and other devices that can obliterate habitats. The overpopulation disaster on Easter Island occurred with a primitive culture. It still has grass, but not much of an ecosystem. Imagine what could have happened with modern technology.

The Pill fundamentally changed the relationship of men and women, the place of children in a family and, on the macro level, population dynamics. The family is the basic building block of society and civilization, not only because it is an economic unit (you don’t pay your spouse to wash the dishes or take out the garbage), but more importantly, because the family critically shapes the next generation. Therefore, a large change in family structures will have far-reaching effects, at least in the “short run” of five to ten generations. However, to steal from Jerry Pournell and Larry Niven: “Think of it as evolution in action.“[9] The people who embrace contraception as a path to “the good life” will (evolutionarily speaking) remove their vote for influencing their future within a few generations. It is true that for humans, memes may carry as much weight as genes, but the same process applies — as long as meme propagation is kept below a critical level, perhaps by co-traveling xenophobic memes. On the other hand, people who don’t have much of their material resources tied up in children may have more time to devote to meme propagation. However, many studies have shown than the people who have the greatest impact on teens and pre-teens are their parents.[10]

One possible result is that a millennium from now, the Pill will be a small blip, as inconsequential as the Shakers, and for essentially similar reasons. Nanotechnology-enabled life extension techniques will extend that blip for a while, but because the prolific pro-natalists will continue having even more children for their longer lives, more pro-natalists will be born to outvote the anti-natalists. This is why the Jewish Knesset now has a significantly higher percentage of Ultra-Orthodox than when it began,[11] why Utah’s government is almost 100% Mormon,[12] and why the Amish are one of the fastest growing minority in the world, with an average of 6.8 children per family.[13]

The opposing trend is controlled by a number of factors. First, the birth rate goes down as women’s educations go up. This occurs partially because practically speaking, it is more difficult to go to school while being married and raising children. More subtly, however, it is because school is an investment in learning a professional trade — it is a different investment than children. In addition, women and men are implicitly and explicitly taught that a better career is more important than raising more children.

The problem isn’t that women are being educated. The problem is that if they are taught something that results in the extinction of our egalitarian, humanistic, and liberal society by one that is misogynistic, xenophobic, and unjust, then something is wrong.

One weapon of the contraceptive culture is the reeducation of the pro-natalist’s children. Proponents of secularization would call this “giving people free access to all information” not “reeducation”. But when Bibles are banned from the classroom, and students are taught in many ways that they are just animals, it seems like imposition of a secular viewpoint. At least they could teach the debate — and at the end of the semester, the students could try to guess the teacher’s bias (if they can’t, then the teacher presented both views with equal force).

There are more than a million home-schooled children in the U.S., up to two-thirds of whom are there primarily because their parents fear the imposition of our government’s ideas on their children.[14] This quiet protest is so feared by governments that parents are prosecuted for doing this, not only in all totalitarian countries but even in some democratic nations.[15] The alternative is that the governments of open, liberal, and secularized nations (that accept contraception) will decide that the vote of the increasing minority is wrong. Could their right to vote be taken away? Of course it can; it has happened before.

A pessimistic view of this possibility of disenfranchisement is also supported by the prevalence of abortion in liberal democracies. Given the accuracy of ultrasound imagery, if we can ignore the right to life for our most innocent and helpless, then how safe is something as meager as the right to vote? Niemöller’s poem about trade unionists, Communists, and Catholics comes to mind.[16] So do the events in ancient Egypt, during the three or four hundred years between the famines that Joseph ameliorated (Genesis 50:22). The Egyptian upper class used contraception[17], and they felt threatened by the increasing numerical growth of the Jews, who had strict injunctions against it.

Is it good for our country that more than a million children are being taught by their parents? What if rebellious parents are teaching strange and dangerous ideas? How do we decide which ideas are dangerous? Do we censor and suppress them? After all, ideas have consequences.

The answer is that there are limits to what parents can do, but very few — if any — on what they teach. The whole point about freedom of religion is that we can believe what we want, as long as we do not destroy society or individuals with our actions. Our constitution was written not to limit individuals, but to put strict limits on government, since it is inherently more powerful.

The temptation to avoid having children is not limited to any particular culture. The reason is simple: raising children is an expensive, risky, and difficult investment. Parents must be willing to give up fancy vacations, luxury cars, time to themselves, a good night’s sleep, stress on their marriage, and many other things, thus weighing against the pro-natalist agenda. However, the culture that teaches that children are a blessing and a worthwhile investment instead of a cost will overcome those that do not — even if it tends to encourage people to be ignorant, misogynist, racist, and illogical (like two polygamist religions that start with the letter “M“[18]).

Cyril M. Kornbluth’s 1951 short story “The Marching Morons” illustrates another potential downside to the anti/pro-natalist issue by portraying a scenario in which selective pressure resulted in smart people breeding themselves out of existence. It also, despite the derogatory title, provides a warning: the originator of the “Final Solution” (placing all the fertile morons onto one-way rockets to nowhere) ends up screaming futilely as he himself is loaded on one of the last rockets. Kornbluth’s main premise seems logical. People are often willing to trade children for the better material things and higher standard of living, and those with more education are more willing to do so. But is the resulting cost to society worth it?

What will happen when productive nanosystems and advanced software lowers the price of goods and services to very low levels? Many other things will happen at the same time, but in a society of economic abundance, the expense of children will drop significantly — and will be limited only by attention span and desire (and possibly expanded by reproductive-enhancing technologies including parthenogenesis and male pregnancy). Is there a gene for liking children? Or is it a meme that is culturally transmitted? Evolution favors both. Of course, evolution may also favor a “Boys from Brazil“[19] scenario (in which numerous clones of a dictator are grown to reinstate his rule). This strategy may be successful as long as the clones survive to adulthood and can reproduce.

While a contraceptive culture is non-sustainable, especially in the face of a competing culture whose population is growing, it must be noted that a pro-natalist culture is also non-sustainable. Isaac Asimov pointed out that even if we could overcome all technological obstacles, any growth rate will eventually result in humanity becoming a big ball of flesh, expanding at the speed of light (BOFESOL, or BOF for short). At a modest 3% rate, we will reach the initial BOF in only 3,584 years. After that, the speed of light will limit growth.

However, the fact that a contraceptive culture is non-sustainable in a significantly shorter term than the pro-natalist one is why it makes sense for governments to support traditional religions in their efforts to maintain traditional morality and fertility. The difficult problem is finding ways to ensure the survival of a culture without it becoming xenophobic. This is difficult to do when we think that we have Absolute Truth and the One True Religion on our side. But then exactly how do we know that our particular set and ordering of values is the objectively correct one? Note that the denial of the existence of any objectively maximum set of values exists is itself a particular set of values. And note also that sustainability and tolerance are also values that, like all values, must be assumed because they cannot be proven.

Given the contradictory evidence and shifting values, it is likely that equilibrium between pro-natalist and contraceptive meme sets can never be reached. Instead, humanity will likely experience benign (and sometimes not-so benign) boom and crash cycles similar to those that natural ecosystems suffer from. Only for us, our cycles will be constrained by opinions and technological capabilities, not by predators.


African Colonies

A third historical event that may be of consequence a thousand years from now is “Belgians in the Congo”. The Belgian regime in the Congo was about as brutal and inhuman as any the Europeans imposed on its colonies. However, the European Empires spread Christianity in Africa — where it remains a fast-growing religion. This African event may be as significant as when the Spanish and Portuguese spread Christianity in Latin America, and will bring about a fundamentally different world than if Africa had gone Islamic, Hindu, or Confucian. Think of Latin American worshiping the Aztec gods with human sacrifice, or the impact on us if it were an Islamic Civilization. We would live in a very different world.

Then again, Africa may still turn Islamic. After all, Islam generally values large families, just like the fast-growing Mormon and Amish religions do. On the other hand, when Muslims become secularized, they reduce the number of their offspring, just like secularized Christians do — hence their accompanying philosophies will suffer the same fate. The result will be that in order to survive in the long term, future generations must be hostile to secularization, and probably hostile to each other’s religious views also (not a pleasant thought, even if they do share many of the same values). Over the next thousand years, in view of the exponential increase in technological power, which viewpoint will win? The answer depends on science, theology, and demographics.

A handful of nominal Christians destroyed the Aztec civilization, not because of their technology (though that helped), but because the Aztec civilization was based on a great and powerful falsehood — that in order for the sun to rise every morning, human blood needed to be shed — thereby earning the hatred of the neighboring tribes whose blood it was that was usually shed. Islam is not as false as the Aztec religion — otherwise it would not have lasted this long. But the jury is still out on whether it can survive the extreme technological advancement that productive nanosystems will bring. Will fanatical Muslims be able to design and build the nanotech equivalent of 747 jets that they can fly into the skyscrapers of their enemies? Or will they just learn how to use it in unexpected and terrorizing ways? Given the high level of technological advancement in the Muslim empire a thousand years ago, the answer seems to be “yes” to both questions. However, Islam’s ultimate rejection of reason is its Achilles heel, and in the past it helped lead to the decline of the Ottoman Empire after its peak in the 1300s. This is because Islam’s idea of Allah’s absolute transcendence is incompatible with the idea that the universe is ordered and knowable. Psychologically, the problem is that if the universe is not ordered and knowable, then why bother learning and doing science? Meanwhile, Hinduism has many competing gods, and this leads (like in ordinary paganism) to its rejection of the logical principle of contradiction — without which science is impossible. Confucianism seems to be more a moral code than a religious one, so it seems that it could be accommodating to technology — but that didn’t seem to help its practitioners develop it before they collided with the West. Similarly with Buddhism. Meanwhile, the decadent West’s deconstructionism and nihilism is gnawing at its parent’s roots, rejecting reason and science as merely tools of power.

It can be claimed that religious views will keep changing and splitting into new orthodoxies. In that case, the result will be an ever-shifting field of populations and sub-populations with none winning out completely over the others. But as far as I can tell, neither Judaism, Catholicism, Buddhism, nor Islam have changed any of their core beliefs in the past few millennia. In contrast, the Mormons have changed a number of their major doctrines, and so have the Protestants. This does not bode well for their long-term survival as a coherent organization, though the Mormons do have their high fertility on their side.

At the moment, the whole world is copying the Christian-rooted West, as many of their scientific elite are educated in Europe and the United States. It is difficult to say to what extent they understand the philosophical underpinnings of science. When their own universities start to educate their elite, their cultural assumptions will probably displace the Judeo-Christian/Greek philosophy of the West. Then what? It depends if science, which is the foundation of technological superiority, is simply a cargo cult that works. My claim is that science will only continue working for more than a generation or two if its underlying assumptions come with it — that the universe is both ordered and knowable.

These Judeo-Christian assumptions are huge — though atheists, agnostics, and (maybe) Muslims and Buddhists should also be able to accept them. However, every scientist still faces the question of why the universe is ordered and knowable (and if you’re not constantly asking the next question, especially the “why” question, then you’re not a very good scientist). The theistic answer of design by creator[20] is not too far away from the assumption of an ordered and knowable universe, and from there, one begins skating very close to the concept that we are made “Imago Dei”–in God’s image. Some people think that there is too much hubris and ego to that belief, but you don’t see dolphins landing on the Moon, or chimpanzees creating great symphonies (or even bad rap).

“Imago Dei” is the most logical conclusion once we can explain why the universe is predictable and knowable. And being made in God’s image has other implications, especially in terms of our role in this universe. Most notably, it promotes the idea of human beings as powerful stewards of creation, as opposed to subservient subjects of Mother Nature, and it will pit Nietzschean Transhumanists and Traditional Catholics against Gaian environmentalists and National Park Rangers.


Television

Writing has been around for thousands of years, while the printing press has been around for almost 600. It would seem that the printing press was the one invention that, more than anything else, enabled the development of all subsequent inventions. Television could be considered an improvement over writing, and given that large amounts of video can be subject to slightly less interpretation than an equal amount of effort writing text, our descendants might get a better, more complete depiction of history than they could get from just text or physical artifacts. However, the television that Joel mentioned was controlled by the big three television networks. This was because the cost to entry was so high (currently from $200,000 to $13 million per episode). So the role of television of the 1960s was similar to the role of books in Medieval Europe, where the cost of a book was equivalent to the yearly salary of a well-educated person). For this reason, Joel’s headline will not be considered significant, though he was close.

He was close because television’s electronic video display offspring, the computer — especially when connected to form the Internet — will certainly be significant. It will be as significant as the nuclear bomb and the Pill combined, if and when Moore’s Law ushers in the Singularity. But Joel was writing a song, not engaging in future studies. We might as well criticize him for not mentioning the coining of the word “nanotechnology”.


Moonshot

A few of Billy Joel’s headlines may be remembered 1,000 years from now, but none mentioned so far will really be significant.

I would go out on a limb and say that other than the scientific and industrial revolutions, the American Constitution, and the virtual abolishment of slavery, little of consequence has happened in the last thousand years. There is, however, one significant event that happened in the 1400s. No, it’s not Spain kicking out the Muslims. It’s not even Admiral Zheng He, Admiral of China’s famed Dragon Fleet, sailing to Africa in the 1420s, though we’re getting warmer. As impressive as they were, Zheng’s voyages did not change the world. What did change the world was the tiny fleet of three ships that returned from the New World to Spain in 1492.

Apollo and Star Trek both pointed to the next and final frontier. It is true that little has happened in the American space program since Apollo, and with the retirement of the 1960s-designed Space Shuttle, even less is expected. This poor showing has occurred because the moon shot, as awe-inspiring as it was, was a political stunt funded for political reasons. The problem is that it didn’t pay for itself, and we therefore have a dismal space program. However, with communication, weather, and GPS satellites, we have a huge space industry. It’s all about the value added.

On the other hand, it’s the governmental space programs that seem to make the initial (and necessary) investments in the basic technology. More importantly, these programs give voice to that which makes us human — “to look at the stars and wonder”.[21]

Realistically, looking at the historical records of Jamestown and Salt Lake City, space development will occur when prosperous upper class families can sell their homes and businesses to buy a one-way ticket and homesteading tools. In today’s money, that would be about one or two million dollars. We have a long way to go to achieve that price break, though it helps that Moore’s Law is exponential.

There have only been a dozen men on the Moon so far, but Neil Armstrong will be remembered far longer than anyone else in this millennium. After the human race has spread throughout the solar system, and after it starts heading for the stars, everyone will remember who took the first small step. The importance of this step will become obvious after the Google Moon prize is won, and after Elon Musk and his imitators demonstrate conclusively that we are no longer in a zero sum game.

That is something to look forward to.

Tihamer Toth-Fejel is Research Engineer at Novii Systems.


Acknowledgments

Many thanks to Andrew Balet, Bill Bogen, Tim Wright, and Ted Reynolds for their significant contributions to this column.


Footnotes

1. Tihamer Toth-Fejel, The Politics and Ethics of the Hall Weather Machine, https://lifeboat.com/blog/2010/09/the-politics-and-ethics-of…er-machine and http://www.nanotech-now.com/columns/?article=486
2. Michael Flynn, Washer at the Ford, Analog, v109 #6 & 7, June & July 1989.
3. Arthur Kantrowitz, The Weapon of Openness, http://www.foresight.org/Updates/Background4.html
4. United States Signals Intelligence Directive 18, 27 July 1993, http://cryptome.org/nsa-ussid18.htm
5. e.g. Mexico, India, Saudia Arabia, and Russia http://www.forbes.com/lists/2010/10/billionaires-2010_The-Wo…_Rank.html Also, the petro-dollar millionaires in the Mideast http://www.aneki.com/millionaire_density.html
6. There is an interesting discussion at http://en.wikipedia.org/wiki/Debate_over_the_atomic_bombings…d_Nagasaki
7. David Brin,The Transparent Society, Basic Books (1999). For a quick introduction, see The Transparent Society and Other Articles about Transparency and Privacy, http://www.davidbrin.com/transparent.htm.
8. Tihamer Toth-Fejel, Population Control, Molecular Nanotechnology, and the High Frontier, The Assembler, Volume 5, Number 1 & 2, 1997 http://www.islandone.org/MMSG/9701_05.html#_Toc394339700
9. Larry Niven and Jerry Pournelle, Oath of Fealty. New York : Pocket Books, 1982
10. KIDS COUNT Indicator Brief, Reducing the Teen Birth Rate, July 2009. http://www.aecf.org/~/media/Pubs/Initiatives/KIDS%20COUNT/K/…0brief.pdf
11. From a small group of just four members in the 1977 Knesset, they gradually increased their representation to 22 (out of 120) in 1999 (http://en.wikipedia.org/wiki/Haredi_Judaism). The fertility rate for ultra-Orthodox mothers greatly exceeds that of the Israeli Jewish population at large, averaging 6.5 children per mother in the ultra-Orthodox community compared to 2.6 among Israeli Jews overall (http://www.forward.com/articles/7641/ ).
12. As of mid-2001, the Governor of Utah, and all of its Federal senators, representatives and members of the Supreme Court are all Mormon. http://www.religioustolerance.org/lds_hist1.htm
13. Julia A. Ericksen; Eugene P. Ericksen, John A. Hostetler, Gertrude E. Huntington. “Fertility Patterns and Trends among the Old Order Amish”. Population Studies (33): 255–76 (July 1979).
14. 1.1 Million Homeschooled Students in the United States in 2003. http://nces.ed.gov/nhes/homeschool/
15. HOMESCHOOLING: Prosecution is waged abroad; troubling trends abound in US http://www.bpnews.net/BPnews.asp?ID=34699
16. http://timpanogos.wordpress.com/2010/02/26/quote-of-the-mome…speak-out/
17. http://www.patentex.com/about_contraception/journey.php
18. I should note that almost all of the people I have personally known from these two religions are trustworthy, intelligent, and a pleasure to meet. Despite what they are taught in their sacred texts.
19. Ira Levin, Boys from Brazil, Dell (1977)
20. There are many question to follow. How did He do it? Why is He masculine? Why did He do it? How do we know? That last question is especially relevant.
21. Guy J. Consolmagno, Brother Astronomer: Adventures of a Vatican Scientist, McGraw-Hill (2001)

When examining the delicate balance that life on Earth hangs within, it is impossible not to consider the ongoing love/hate connection between our parent star, the sun, and our uniquely terraqueous home planet.

On one hand, Earth is situated so perfectly, so ideally, inside the sun’s habitable zone, that it is impossible not to esteem our parent star with a sense of ongoing gratitude. It is, after all, the onslaught of spectral rain, the sun’s seemingly limitless output of charged particles, which provide the initial spark to all terrestrial life.

Yet on another hand, during those brief moments of solar upheaval, when highly energetic Earth-directed ejecta threaten with destruction our precipitously perched technological infrastructure, one cannot help but eye with caution the potentially calamitous distance of only 93 million miles that our entire human population resides from this unpredictable stellar inferno.

On 6 February 2011, twin solar observational spacecraft STEREO aligned at opposite ends of the sun along Earth’s orbit, and for the first time in human history, offered scientists a complete 360-degree view of the sun. Since solar observation began hundreds of years ago, humanity has had available only one side of the sun in view at any given time, as it slowly completed a rotation every 27 days. First launched in 2006, the two STEREO satellites are glittering jewels among a growing crown of heliophysics science missions that aim to better understand solar dynamics, and for the next eight years, will offer this dual-sided view of our parent star.

In addition to providing the source of all energy to our home planet Earth, the sun occasionally spews from its active regions violent bursts of energy, known as coronal mass ejections(CMEs). These fast traveling clouds of ionized gas are responsible for lovely events like the aurorae borealis and australis, but beyond a certain point have been known to overload orbiting satellites, set fire to ground-based technological infrastructure, and even usher in widespread blackouts.

CMEs are natural occurrences and as well understood as ever thanks to the emerging perspective of our sun as a dynamic star. Though humanity has known for centuries that the solar cycle follows a more/less eleven-year ebb and flow, only recently has the scientific community effectively constellated a more complete picture as to how our sun’s subtle changes effect space weather and, unfortunately, how little we can feasibly contend with this legitimate global threat.

The massive solar storm that occurred on 1 September 1859 produced aurorae that were visible as far south as Hawai’i and Cuba, with similar effects observed around the South Pole. The Earth-directed CME took all of 17 hours to make the 93 million mile trek from the corona of our sun to the Earth’s atmosphere, due to an earlier CME that had cleared a nice path for its intra-stellar journey. The one saving grace of this massive space weather event was that the North American and European telegraph system was in its delicate infancy, in place for only 15 years prior. Nevertheless, telegraph pylons threw sparks, many of them burning, and telegraph paper worldwide caught fire spontaneously.

Considering the ambitious improvements in communications lines, electrical grids, and broadband networks that have been implemented since, humanity faces the threat of space weather on uneven footing. Large CME events are known to occur around every 500 years, based on ice core samples measured for high-energy proton radiation.

The CME event on 14 March 1989 overloaded the HydroQuebec transmission lines and caused the catastrophic collapse of an entire power gird. The resulting aurorae were visible as far south as Texas and Florida. The estimated cost was totaled in the hundreds of million of dollars. A later storm in August 1989 interfered with semiconductor functionality and trading was called off on the Toronto stock exchange.

Beginning in 1995 with the launch and deployment of The Solar Heliospheric Observatory (SOHO), through 2009 with the launch of SDO, the Solar Dynamics Observatory, and finally this year, with the launch of the Glory science mission, NASA is making ambitious, thoughtful strides to gain a clearer picture of the dynamics of the sun, to offer a better means to predict space weather, and evaluate more clearly both the great benefits and grave stellar threats.

Earth-bound technology infrastructure remains vulnerable to high-energy output from the sun. However, the growing array of orbiting satellites that the best and the brightest among modern science use to continually gather data from our dynamic star will offer humanity its best chance of modeling, predicting, and perhaps some day defending against the occasional outburst from our parent star.

Written by Zachary Urbina, Founder Cozy Dark

I gave the following speech at the Space Elevator Conference.

——

“Waste anything but time.”

—Motto of the NASA Apollo missions

The consensus amongst those of us who think it is even possible to build a space elevator is that it will take more than 20 years. But how can you say how long it will take to do something until you specify how many resources it will require and how many people you’ve assigned to the task?

For the first part of this speech, let’s pretend we can make the nanotubes and focus on the remaining 99%. When analyzing a task you generally know how to do, it is best to take a top-down approach. If you are painting a room, you would divide this task into the prep, the actual painting, and the cleanup, and then organize the work in each one of those phases.

In my former life at Microsoft, I learned to appreciate the power of educated and focused large-scale teams as the best tool to beat the competition. With a 1,000 person team, 1 man-year of work is accomplished every 2 hours. Work is generally fungible so a 20 year project could definitely use more people and go faster.

The goal in a project is for everyone to always be moving ahead full speed and to finish on the same day. What slips schedules is when you have people with dependencies on each other. If one person needs something from another to do their work, you have the potential for that person to go idle and to slip the entire project.

You can prevent that from happening with strong leadership. In the recent BP oil spill, Louisiana tried to get permission to build berms, but the EPA and the other agencies took a long time to analyze the environmental impact. The federal bureaucracy with all of its technology moved slower than lifeless oil floating in the ocean. A good leader can cut through red tape and bring in outside assets to unblock a situation.

The various big pieces of the space elevator have clear boundaries. Those building the solar panels need work with the climber team only to come up with a way to attach the panels. The physical shape of the climber impacts little on the anchor station. The primary issues are the throughput of tons per day and the process to load a climber. Even mission control looks at pieces as black boxes. Mega-projects can be broken down into efforts with clear boundaries so this means that in general, once commenced, everyone should be able to work in parallel.

The robotic climber is one of the most complicated pieces of hardware that the space elevator needs, and it has many of the same requirements as one of Seattle’s Boeing airplanes: both will move a few hundred miles per hour, and have to deal with difficult changes in temperature, pressure, and radiation.

Boeing is at least on a 7 year timeframe with its 787, compared to NASA which seems to takes decades to do anything. The goal is to be the quality of NASA, but faster than the speed of Boeing. Engineering is about humans and their computers, and both can be improved.

At least some of the 787’s delays were not technically related, as the local papers documented months of labor disputes. Boeing is also working more closely with its suppliers over the Internet than ever before, and learning how to do this.

Man landed on the moon 7 years after Kennedy’s speech, exactly as he ordained, because dates can be self-fulfilling prophecies. It allows everyone to measure their work against their plan and determine if they need additional resources. If you give out a few years of work per person, and allow for time for ramp-up and test, then about 7 years is quite reasonable. Long timelines encourage procrastination. If you want something to happen more slowly, you can find always ways to succeed.

It is cheaper to get loans for shorter terms, so it is cheaper to build something in 7 years than in 20. A 20-year plan is almost a guaranteed way to get a “no” answer. Even the U.S. Congress doesn’t think more than a few months ahead.

Boeing has the requisite technical skills, and they have 160,000 employees, so we could use them as a baseline of an estimate on how many people it would take. Here is what those 160,000 people work on:

Boeing Projects

2018 Bomber

737 Airborne Early Warning and Control (AEW&C)

737 AEW&C Peace Eagle

737 AEW&C Wedgetail

767 Airborne Warning and Control System (AWACS)

A-10 Thunderbolt II

A160 Hummingbird

AC-130U Gunship

Aegis SM-3

Airborne Early Warning and Control

AGM 86-C Conventional Air-Launched Cruise Missile (CALCM)

AH-64 Apache

AV-8B Harrier II Plus

Airborne Battle Management (ABM)

Airborne Warning and Control System (AWACS)

Airlift and Tankers (A&T)

Advanced Global Services & Support

Advanced Tanker

Air Force One

Airborne Battle Management (ABM)

Airborne Laser Test Bed (ALTB)

Ares I Crew Launch Vehicle

Arrow Interceptor

Avenger

B-1B Lancer

B-2 Spirit

B-52 Stratofortress

BattleScape

Boeing 376 Fleet

Boeing 601 Fleet

Boeing 702 Fleet

Boeing 702MP Spacecraft

Boeing Australia

Boeing Launch Services

Boeing Military Aircraft

Boeing Satellites

Brigade Combat Team Modernization (BCTM)

Brimstone Precision Guided Missile

C-17 Globemaster III

C-130 Avionics Modernization Program

C-32A Executive Transport

C-40A Clipper Military Transport

C-40B Special-Mission Aircraft

C-40C Operational Support and Team Travel Aircraft

Canard Rotor/Wing

CH-46E Sea Knight

CH-47D/F Chinook

Cargo Mission Contract (CMC)

Checkout, Assembly & Payload Processing Services (CAPPS)

Combat Survivor Evader Locator (CSEL)

Commercial/Civil Satellite Programs

Constellation/Ares I Crew Launch Vehicle

Conventional Air-Launched Cruise Missile (CALCM)

Cyber and Information Solutions

DataMaster

Defense & Government Services

Delta II

Delta IV

Directed Energy Systems (DES)

DIRECTV 1, 2, 3

DIRECTV 10, 11, 12

DRT

E-3 AWACS

E-4B Advanced Airborne Command Post

E-6 Tacamo

EA-18G Airborne Electronic Attack Aircraft

Engineering & Logistics Services

F-15E Strike Eagle

F-15K — Republic of Korea

F/A-18 Hornet

F/A-18E/F Super Hornet

F-22 Raptor

F/A-18E/F Integrated Readiness Support Teaming (FIRST)

Family of Advanced Beyond Line-of-Sight Terminals (FAB-T)

Global Broadcast Service (GBS)

Global Services & Support

Global Positioning System

Global Positioning System (GPS) IIF

Global Security Systems

GSA

GOES N-P

Ground-based Midcourse Defense (GMD) System

Harpoon

Harrier

Hornet

I&SS Mission Systems

Insitu

Integrated Logistics

Integrated Weapons System Support Program

Intelligence and Security Systems

Intelsat

International Space Station (ISS)

Iridium

Intelligence, Surveillance, Reconnaissance (ISR) Services

Joint Direct Attack Munition (JDAM)

Joint Effects-Based Command and Control (JEBC2)

Joint Helmet-Mounted Cueing System (JHMCS)

Joint Recovery and Distribution System (JRaDS)

Joint Tactical Radio System Ground Mobile Radios (JTRS GMR)

KC-10 Extender

KC-135 Stratotanker

KC-767 Advanced Tanker

Lancer

Laser & Electro-Optical Systems (LEOS)

Laser Joint Direct Attack Munition (LJDAM)

Leasat

MH-47E/G Special Operations Chinook

Maintenance, Modifications & Upgrades

Measat-3

Military Satellite Systems

Milstar II

Mission Operations

Mission Systems

Military Satellite Systems

Network and Space Systems

Network and Tactical Systems

Network Centric Operations

NSS-8

Orbital Express

P-8

Patriot Advanced Capability-3 (PAC-3)

Peace Eagle

Phantom Works

Raptor

Rotorcraft Systems

SQS

ScanEagle

Sea Knight

Sea Launch

SBInet

SkyTerra

Small Diameter Bomb (SDB)

SoftPlotter

SOSCOE

Space and Intelligence Systems

Space Based Space Surveillance (SBSS) System

Space Exploration

Space Flight Awareness

Space Shuttle

SPACEWAY 1, 2 North

Special Operations Chinook

Spectrolab

Spirit

St. Louis Flight Operations

Standoff Land Attack Missile Expanded Response SLAM ER

Strategic Missile & Defense Systems

Strategic Missile Systems

Stratofortress

Super Hornet

Supply Chain Services

T-45 Training System

Tacamo

TACSAT I

Tanker

Thuraya-2, 3

Training Support Center

Training Systems and Services

Transformational Wideband Communication Capabilities for the Warfighter

UH-46D Sea Knight

UHF Follow-On

Unmanned Airborne Systems

Unmanned Little Bird

V-22 Osprey

VSOC Sentinel

Wedgetail

Wideband Global SATCOM (WGS)

X-37B Orbital Test Vehicle

X-51 WaveRider

XM Satellite Radio

XM-3, 4

XSS Micro-Satellite

The news in Seattle was how Boeing’s 787 was continually being delayed, but they are involved in so many military and space efforts, it is surprising they find any time at all to work on their Dreamliner!

Boeing is working on 150 projects, so they have 1,100 people per project. Averages are more prone to error, so we can assume a space elevator is 10 times bigger than average. This gives you 11,000 people. If you knew the size of the teams at Boeing, something which is not public information, you could better refine the estimates. A 11,000 person team would be a sight to behold.

If we landed on the moon 7 years after Kennedy told us we would, and if Boeing can build the 787 in 7 years, they we can build the rest of the space elevator in 7 years. It is just a matter of having enough of the right people. So 11,000 people in about 7 years is a first estimate. But this is the 21st century, and we landed on the moon 40 years ago.

Software

Software is my training, and what I will turn to now. Ford Motor Company made an ad that said before they build a car, they build it inside a computer. If you are satisfied with the design inside a computer, you are ready to start production. What is true for a car is even more true for an airplane, and there is a lot of software involved in designing, testing, running and maintaining an airplane, and I’ve had the chance to talk to some Boeing engineers in my years in Seattle. It would not be surprising if the majority of engineers at Boeing knew how to program, and that software is a large part of Boeing’s investments. On the Wikipedia page for the 787, their (proprietary) software is mentioned several times as being a reason for delays.

Setting aside the space elevator, the key to faster technological progress is the more widespread use of free software in all aspects of science. For example, I believe there are more than enough computer vision PhDs, but there are 200+ different codebases and countless proprietary ones. Simply put, there is no computer vision codebase with critical mass, and this problem exists for a number of problem domains. The lessons of Wikipedia have not been learned.

We are not lacking hardware. Computers today can do billions of additions per second. If you could do 32-bit addition in your head in one second, it would take you 30 years to do the billion that your computer can do in that second.

While a brain is different from a computer in that it does work in parallel, such parallelization only makes it happen faster, it does not change the result. Anything accomplished in our parallel brain could also be accomplished on computers of today, which can do only one thing at a time, but at the rate of billions per second. A 1-gigahertz processor can do 1,000 different operations on a million pieces of data in one second. With such speed, you don’t even need multiple processors. Even so, more parallelism is coming via GPUs.

I have written a book that has ideas on how to write better software faster. Today, too many programmers of this world have not adopted free software and modern programming languages. I cannot speak for the shortest amount of time it would take to build the hardware for the space elevator, but I can speak a little bit about the software. Software is interesting because it seems there is no limit on the number of people who can work together.

Linux’s first release in 1991 was built by one programmer and had 10,000 lines of code. It is now 1,000 times bigger and has 1,000 times as many people working on it. Software is something like Wikipedia, which started with a handful but now has millions of people who have made contributions. I grabbed a random article on Wikipedia: it was 5,000 words which is a decent hunk of intellectual property, about as long as this speech which is half-over. It had 1,500 revision and 923 contributors. Each person noticed something different; not every change is perfect, but newer changes can further polish the work, and it usually heads in the right direction evolving towards a good state. A corollary of the point is the line by Eric Raymond that with enough eyeballs, all bugs in software are shallow.

Leonardo Da Vinci said that: “Art is never finished, only abandoned.” This is true of software as well because both are perfectable to an arbitrary degree. Every software programmer has had a feeling in his gut that if he had more resources, he could do more things. Software is different than Wikipedia, but I have found generally that problems in software, assuming you have the right expertise, can be broken up into arbitrarily small tasks. Every interesting problem can be expressed as a functional interface and a graph of code that someone else can maintain.

Some think that the AI problems are so hard that it isn’t a matter of writing code, it is a matter of coming up with the breakthroughs on a chalkboard. But people can generally agree at a high level how the software for solving many problems will work and there has been code for all manner of interesting AI kicking around for decades.

What we never built, and still don’t have, are some places where lots of people have come together to hash out the details, which is a lot closer to Wikipedia than it first appears. Software advances in a steady, stepwise fashion, which is why we need free software licenses: to incorporate all the incremental advancements that each random scientist is making. Even if you believe we need more scientific breakthroughs, it should be clear that things like robust computer vision are complicated enough that you would want 100s of people working together on the vision pipeline. So, while we are waiting for those “breakthroughs, let’s just get the 100 people together.

A big part of the problem is that C and C++ have not been retired. These languages make it hard for programmers to work together, even if they wanted to. There are all sorts of inefficiencies of time, from learning the archane rules about these ungainly languages (especially C++), to the fact that libraries often use their own utility classes, synchronization primitives, error handling schemes, etc.

It is easier to write a specialized and custom computer vision library in C/C++ than to integrate OpenCV, the most popular free computer vision engine. OpenCV defines an entire world, down to the matrix class so it cannot just plug into whatever code you already have. It takes months to get familiar with everything. Most people just want to work. To facilitate cooperation, I recommend Python. Python is usable by PhDs and 8 year olds and it is a productive, free, reliable and rich language. Linux and Python are a big part of what we need. That gives a huge and growing baseline, but we have to choose to use it.

This is a screenshot of a fluid analysis of an internal combustion engine, and is built using a Python science library known as SciPy that can also do neural networks, and computer vision.

We might come up with a better language one day, but Python is good enough. The problem in software today is not a lack of hardware, or the technical challenge of writing code, it is the social challenge of making sure we are all working together productively. If we fix this, the future will arrive very fast. Another similarity between Wikipedia, free software, and the space elevator, is that all are cheaper than their alternatives.

So given all this technology at our disposal, we should be able to build this elevator in less than 7 years. Few would have predicted that it would take the unpaid volunteers of Wikipedia only 2.5 years to surpass Encyclopedia Britannica. Anything can happen in far less time than we think is possible if everyone steps up today to play their part. The way to be a part of the future is to invent it. We need to focus our scientific and creative energy towards big, shared goals. Wikipedia, as the world’s encyclopedia, is a useful and inspiring tool, and so people have come pouring in.

Future software advancements like cars that drive themselves will trigger a new perspective on whether we can build a space elevator. My backup plan to hitching a ride on the space elevator is to encourage people to build robot-driven cars first. Today, I’m trying the reverse approach.

The way to get help for a project is to create a vision that inspires others, but it would also be helpful if we got ten billion dollars. If the US can afford a $1.4 trillion dollar deficit, we can afford a space elevator.

There are already millions of people working in the free software movement today, so in a sense there already are millions of people working on the space elevator. If we had people with the right skills working, we could start writing the actual software for the space elevator. We could in principle write all of the software for the space elevator, just as Boeing and Ford do, which would further shrink the estimates.

Unfortunately, writing all the software now is theoretically possible but not practical. The problem is that a lot of what we need are device drivers. There are many ways to design the cargo door of the climber, and what the various steps of opening this door are. The software that controls the opening and closing of that door is a device driver, a state machine that coordinates all the littler pieces of hardware. You can even think of mission control as the software that orders all of the hardware pieces around. It is a meta-device-driver, so it can’t be written yet either. So, we are mostly stuck with our attempts to write too much software now, but there are a few things we can do.

We could use hardware designs. The hard part about us talking about a design aspect of a climber at a conference like this is that there is no canonical designs or team. Today, there is much interesting intellectual property locked up besides software.

Free data is also important however. Wikipedia has 2.6M lines of code to edit and display the encyclopedia, but it is gigabytes of data. Different projects have different ratios but software is useless without data. Everything Boeing does is proprietary today. We should fix that for the space elevator to encourage faster progress. If we all agree on free software and formats as baseline, it means people can work together. One big challenge is there is no free Solidworks replacement.

Even today, not everything that Boeing has locked up is innovative and strategic. They use standard military encryption algorithms which are public and free. Much of software is boring infrastructure code.

With free software and free formats, we can most quickly build the space elevator. So while it is bad news is that much of the required software efforts will be device drivers, the good news is that are some little software things we can work on today.

Dave Lang’s work on tethers is very useful, and it could use a team of people to work with him to port it from Fortran to Python. Dave started, but he didn’t know Python and the interop tools well enough to make progress. It would also be nice to get some people with supercomputers analyzing ribbon designs, and ways to bootstrap and repair a ribbon. NASA has people, but they don’t have this as their job.

I am hosting spaceelevatorwiki.com on my server and I plan on handing it over to ISEC, and it could serve as a place to coordinate various kinds of software or other R&D. If we could get some people to work, it would push others to get going. Nobody wants to be the only worker on a project. Even millions of dollars of money can be useful to jumpstart software efforts.

The 1% of the Carbon Nanotubes


Okay, so now on to the carbon nanotubes. This is not my area of expertise so it will be short. I am satisfied to make the case that a space elevator is 99% doable in less than 7 years and leave the resolution of the last 1% for another day. To adapt a line from Thomas Edison: success at building a space elevator is 99% perspiration and 1% inspiration.

Many futurists believe that nanotechnology is the next big challenge after information technology. When analyzing a system you know how to build, it is best to work top-down. But when trying to do something new, you work your way up. When learning to cook, you start with an egg, not filet mignon. A good way to attack a big problem like nanotechnology is to first attack a small part of it, like carbon nanotubes. A Manhattan Project on general nanotechnology is too big and unfocused of a problem. Protein folding is by itself a Manhattan project!

A carbon nanotube is a simple and useful nanoscale structure and could be a great way to launch atomically precise manufacturing. The ribbon needs some science related to the design of the ribbon, dealing with friction, damage, and decay, but that work can be done today on supercomputers. There are people at NASA that have the expertise and equipment, but they don’t have this as a goal. One of the points Kennedy made is that sending a man to the moon served as a goal to: “organize and measure.”

One concern is that there is a lot of money being spent on nanotube manufacturing research, but it is doled up in amounts of $100K. I am not convinced that such a small investment can bring any major new advancements.

Nanotubes might require the existing industrial expertise of a company like Intel. We all know that NASA has not seriously considered building a space elevator, and similarly, I think that no one at Intel has considered the benefits to creating the world’s best nanotube threads. They already experimenting with nanotubes inside computer chips because metal loses the ability to conduct electricity at very small diameter, but they aren’t producing them as an independent product for purchase now.

Intel is working in the 35 nm scale today which is a long way from the 2nm nanotube scale. But Intel’s only goal today is faster and cheaper. Intel can fit 11 of their Atom processors on the surface area of a penny. Such a powerful processor is small enough for iPhone sized devices, let alone laptops which is their actual market.

Size is just a side-battle in their goals of more speed and lower production cost. So perhaps Intel would build a nanotube fabrication plant that looks nothing like what they are trying to do today:


Intel Itanium Processor

The first nanotube threads will likely not be good enough for the space elevator, but Intel learns how to build a better and smaller chip in the process of designing and building their current chip. So after they build this manufacturing plant, they could sell their product while they build their next one. Who knows how many of these iterations it would take, or ways to speed the progress up.

Brad Edwards tells me that with one-inch fibers, you can spin arbitrarily long carbon nanotube threads, using the textile process we’ve been following for centuries. Carbon nanotube are the simplest interesting nanoscale structure. Carbon nanotubes were discovered in 1991, and growing fibers in an oven and spinning them into threads is something we could have done back then. Companies like Hexcel, one of the world’s leaders in carbon fiber, is afraid to invest in carbon nanotubes even though they are the company in the world closest to being able to produce them. They are afraid of failure. I have discovered in software that it is about constantly adding new features which enable the new scenarios. Software is therefore constantly about generalizing. From where I sit, carbon fiber and carbon nanotubes are nearly the same thing! Even if it required new investments, Hexcel should be able to do it faster, better, and cheaper than anyone else, and they should have the most customers lined up who might want their new product. Hexcel, the company that should be leading in this market, is paralyzed into inaction by fear of failure. There is a moral obligation to innovation.

In conclusion, there is a new generation of kids maturing known as the Millennials. Their perspective is unique because they’ve been using Youtube and Google for as long as they can remember. They expect to get an answer to any question they pose in 100 milliseconds on their phone. The fact that Social Security is bankrupt is not acceptable. E=mc2 is sufficient proof that nuclear power is a good idea. If you tell them you’ve got a 20-year plan, they will reply that you don’t know what you are doing yet, and you need to develop better plans. Waiting 20 years for a space elevator once makes as much sense as waiting 30 minutes at the gas station. And they are right — they don’t need to change their perspective, the rest of us need to change ours.

I’m not a Millennial, I’m a Generation X’er, and we are the ones building it. But I’m a software person. It would require 10,000 of my first computer to have the same capacity as an iPhone. I see today’s hardware as magic, so I believe someone can conjure up high quality nanotube rope if they invested enough resources. It might not be good enough for the elevator, but it could be a revenue-generating business. In Kennedy’s Rice speech, he mentioned that the Apollo program needed “new metal alloys” that hadn’t been invented. He didn’t think it would be a problem back then and we shouldn’t be 100% convinced now either.

The International Space Station is a tin can in space. We can do a lot better. A space elevator is a railway to space. Scramjets, space tethers, rockets, or reusable launch vehicles, none of them are the way. Perhaps the Europeans could build the station at GEO. Russia could build the shuttle craft to move cargo between the space elevator and the moon. The Middle East could provide an electrical grid for the moon. China could take on the problem of cleaning up the orbital space debris and build the first moon base. Africa could design the means to terraform Mars, etc. This could all be done completely in parallel with the space elevator construction. We went to the moon 40 years ago, and the space elevator is our generation’s moon mission. Let’s do as Kennedy exhorted and: “Be bold”.

There are legal issues to consider. But when this project commences, we need to tell the bureaucrats to get out of the way. We should also approach the global warming crowd and tell them that even better than living in rice patties, and driving electric rickshaws, the best way to help comrade mother earth is with a space elevator. Colonizing space will changes man’s perspective. When we feel crammed onto this pale blue dot, we forget that any resource we could possibly want is out there in incomparably big numbers. This simple understanding is a prerequisite for a more optimistic and charitable society, which has characterized eras of great progress.

We have given this program a high national priority — even though I realize that this is in some measure an act of faith and vision, for we do not now know what benefits await us. But if I were to say, my fellow citizens, that we shall send to the moon, 240,000 miles away from the control station in Houston, a giant rocket more than 300 feet tall, the length of this football field, made of new metal alloys, some of which have not yet been invented, capable of standing heat and stresses several times more than have ever been experienced, fitted together with a precision better than the finest watch, carrying all the equipment needed for propulsion, guidance, control, communications, food and survival, on an untried mission, to an unknown celestial body, and then return it safely to earth, re-entering the atmosphere at speeds of over 25,000 miles per hour, causing heat about half that of the temperature of the sun …, and do all this, and do it right, and do it first before this decade is out — then we must be bold.

John F Kennedy, 1962