Toggle light / dark theme

Novel method enhances size-controlled production of luminescent quantum dots

Luminescence refers to the result of a process in which an object absorbs light at one wavelength and then re-emits it at another wavelength. Through light absorption, electrons in the ground state of the material are excited to a higher energy state. After a certain amount of time characteristic of each excited state, the electrons decay to lower energy states, including the ground state, and emit light. The phenomenon is used in a wide array of technological applications involving highly efficient and reproducible emitting devices that can easily be miniaturized.

The materials with the highest luminescence efficiency include (QDs), currently used in high-resolution displays, LEDs, solar panels, and sensors of various kinds, such as those used for precision medical imaging. Functionalization of the surface of QDs with various types of molecules permits interaction with cellular structures or other molecules of interest for the purpose of investigating molecular-level biological processes.

QDs are semiconductor nanoparticles whose emissive characteristics are directly linked to dot size, owing to the phenomenon of quantum confinement. For this reason, monitoring and control of crystal growth during synthesis of QDs in solution permits intelligent planning of the desired luminescence.

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight.

Crops on a farm capture only about 3% of the available solar energy, much less than the 20%–25% captured by large solar arrays. Now a research team has used a theoretical model to explain efficiencies as high as 67% for photosynthesizing algae hosted by giant clams [1]. The researchers argue that clams achieve this performance with an optimized geometry. The mollusks may also adjust the algae clusters’ spacing according to changing light conditions. The researchers hope that an understanding of clams’ solar efficiency might help other scientists improve the efficiency of solar technology and explain aspects of the photosynthetic behavior of other ecosystems such as forests.

A photosynthetic cell can convert nearly every incoming photon to usable energy, says biophysicist Alison Sweeney of Yale University. But efficiency is much lower in larger systems such as agricultural fields. “Can we achieve near-perfect efficiencies over large land areas? This is an urgent question” as researchers try to reduce reliance on fossil fuels, Sweeney says.

First bendable perovskite solar cell to hit record 22.8% efficiency

In a world first, a team of scientists has successfully developed the first flexible perovskite/silicon tandem solar cell with a record efficiency of 22.8 percent.

While other scientists have developed flexible solar cells before, the new efficiency record sets a new precedent and represents a big step forward for the technology.

It shows that flexible perovskite/silicon tandem solar cells are feasible, meaning they could soon be used for a large variety of applications.

Bending the Rules of Solar: Novel Flexible Perovskite/Silicon Tandem Solar Cell Achieves Record Efficiency

A new study highlights the successful development of the first flexible perovskite/silicon tandem solar cell with a record efficiency of 22.8%, representing a major advance in flexible solar cell technology.

Although rigid perovskite/silicon tandem solar cells have seen impressive advancements, achieving efficiencies as high as 33.9%, the development of flexible versions of these cells has been limited. The main hurdle is improving light absorption in the ultrathin silicon bottom cells without compromising their mechanical flexibility.

In their pioneering study, a research team led by Dr. Xinlong Wang, Dr. Jingming Zheng, Dr. Zhiqin Ying, Prof. Xi Yang, and Prof. Jichun Ye from the Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, has successfully demonstrated the first flexible perovskite/silicon tandem solar cell based on ultrathin silicon, with a thickness of approximately 30 µm. By reducing wafer thicknesses and adjusting the feature sizes of light-trapping textures, they significantly improved the flexibility of the silicon substrate without compromising light utilization. Additionally, by capping the perovskite top cells, they enhanced the mechanical durability of the device, thus addressing concerns related to fractures in the silicon surface.

Discovery of one-dimensional topological insulator

A joint research team has unveiled a new topological insulator (TI), a unique state of matter that differs from conventional metals, insulators, and semiconductors. Unlike most known TIs, which are either three-or two-dimensional, this TI is one-dimensional. The breakthrough will lead to further developments of qubits and highly efficient solar cells.

Details of the research were published in the journal Nature (“Observation of edge states derived from topological helix chains”).

TIs boast an interior that behaves as an electrical insulator, meaning electrons cannot easily move; Whereas its surface acts as an electrical conductor, with the electrons able to move along the surface.

Enel Green Power lands finance for first solar and battery hybrid project

Enel Green Power Australia has announced that it has secured project financing for a $190 million solar and battery hybrid project it plans to build in western NSW.

The Quorn Park hybrid project will combine a 98 MW (dc) solar farm with a 20 MW, 40 MWh battery that will be built around 10kms north west of Parkes. Construction will commence within the next few months and it will be operational in 2026.

The new hybrid is one of the first to be announced since new rules were introduced that allow wind or solar farms to be truly “paired” with a battery storage facility, rather than operating and dispatching as separate units. This may impose some restrictions on operations, but can save on connection and other costs.

/* */