Toggle light / dark theme

We spend our lives surrounded by high-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Thanks to Moore’s law and a number of developments in physics, chemistry, computer science and mathematics over the past 50 years (leading to Nobel Prizes in chemistry in 1998 and 2013) we can now carry out many experiments entirely on computers using modeling.

Read more

Interesting work on solar energy and Q-dot photosensitizers.


Interfacial triplet-triplet energy transfer is used to significantly extend the exciton lifetime of cadmium selenide nanocrystals in an experimental demonstration of their molecular-like photochemistry.

Photosensitizers are an essential component of solar energy conversion processes, in which they are used to generate the highly reactive excited states that enable energy conversion (e.g., photochemical upconversion).1, 2 Typically, molecular triplet photosensitizers are used for such applications, but to improve the solar energy conversion process, the identification and preparation of next-generation triplet photosensitizers is required. However, the design of such photosensitizers—suitable for solar energy conversion and photocatalytic applications—remains a challenge.3

SAN FRANCISCO Facebook Inc (FB.O) said on Thursday it had completed a successful test flight of a solar-powered drone that it hopes will help it extend internet connectivity to every corner of the planet.

Aquila, Facebook’s lightweight, high-altitude aircraft, flew at a few thousand feet for 96 minutes in Yuma, Arizona, Chief Executive Mark Zuckerberg wrote in a post on his Facebook page. The company ultimately hopes to have a fleet of Aquilas that can fly for at least three months at a time at 60,000 feet (18,290 meters) and communicate with each other to deliver internet access.

Google parent Alphabet Inc (GOOGL.O) has also poured money into delivering internet access to under served areas through Project Loon, which aims to use a network of high-altitude balloons to made the internet available to remote parts of the world.

Read more

US social networking giant Facebook announced on Thursday a successful test of its solar-powered Aquila drone, which will beam Internet to people in remote areas.

MOSCOW (Sputnik) — Facebook has been working on Aquila Project with leading experts in aerospace and communication technologies, from NASA’s jet propulsion lab to a small UK firm that created one of the world’s longest flying solar-powered drones.

Read more

I wonder, if NASA and/or SpaceX goes to Mars in the 2030’s as planned, by the time the 2050’s roll around a manned attempt to Ceres or Jupiter trojans might be attempted or perhaps an unmanned vehicle made on Mars beats this sail.


Japan’s space agency has its sights on unexplored asteroids as far away as Jupiter, a project that at one level draws on centuries of sail science.

The Japan Aerospace Exploration Agency this month unveiled a huge prototype solar sail designed to power a JAXA probe as it explores asteroids that circle the sun on roughly the same orbit as Jupiter. The sail measures 2,500 sq. meters and is made up of thousands of ultraslim solar panels.

Tech now really moving into the clouds.


Although the world is increasingly connected through the internet, there are still four billion people or 60% of the world’s population who do not have such access. 1.6 billion of those people live in remote locations and do not have access to mobile broadband networks. Facebook Connectivity Lab just announced the first full-scale test flight of Aquila, a solar-powered airplane that can be used to bring affordable internet to isolated areas.

Aquila is a high-altitude, long-endurance, unmanned solar-powered airplane. It has a wingspan bigger than a Boeing 737 airplane but weighs hundreds of times less due to its carbon fiber frame. Many of the team members who contributed to the craft had previous experience at at NASA, Boeing, DARPA, Northrop Grumman, and the British Royal Air Force.

Read more

So far the system can be used to receive signals carrying data at rates of up to 2.1 gigabits per second, though the team claims it could go faster if it were built to absorb infrared, rather than blue, light.

It’s worth pointing out that this isn’t the first piece of hardware to emerge from the Connectivity Lab. Famously, it’s been working on a solar-powered drone to deliver Internet access. That particular project is progressing slowly, though, so despite the fact that the team behind the new laser device plans to test it in a real-world setting, there’s likely still much development ahead before it’s used widely.

The social network is, however, busy pursuing plenty of other projects to take data to the sticks. Most notably, its Telecom Infra Project will use open-source cellular networks to achieve similar results. That way, you see, anyone will be able to sign up on Facebook.

Read more

NASA’s Space Technology Mission Directorate (STMD) worked with two private firms to develop advanced structures for high power solar arrays that are stronger, lighter, and package more compactly for launch. This technology investment furthers the agency’s deep space exploration goals and aids the commercial communications satellite industry, the provider of direct-to-home television, satellite radio, broadband internet and a multitude of other services.

The Roll Out Solar Array (ROSA) is one of the options eyed by NASA that could power an advanced solar electric propulsion spacecraft that makes possible such endeavors as the agency’s Asteroid Redirect Mission—plucking a multi-ton boulder from an asteroid’s surface, and then maneuvering that object into a stable orbit around the moon for human inspection and sampling.

Tapping into ROSA technology allows the conversion of sunlight into electrical power that drives the ion thrusters of a solar electric propulsion spacecraft. ROSA is expected to enable a number of space initiatives and is a cost-saving plus to transport cargo over long distances beyond the Earth.

Read more