Toggle light / dark theme

Picture credit: Knightscope.

The following post was written and/or published as a collaboration between Benzinga’s in-house sponsored content team and a financial partner of Benzinga.

Robots patrolling around shopping malls, casinos and places of work actively looking for criminal activity might no longer be something straight out of a science fiction novel or movie. Knightscope, Inc., a Silicon Valley Based startup, is building and deploying fully autonomous security robots that deter, detect and report crime.

The field of experimental quantum communication promises ways of efficient and unconditional secure information exchange in quantum states. The possibility of transferring quantum information forms a cornerstone of the emerging field of quantum communication and quantum computation. Recent breakthroughs in quantum computation with superconducting circuits trigger a demand for quantum communication channels between superconducting processors separated in space at microwave length frequencies. To pursue this goal, Kirill G. Fedorov, and a team of scientists in Germany, Finland and Japan demonstrated unconditional quantum teleportation to propagate coherent microwave states by exploring two-mode squeezing and analog feedforward across a distance of 0.42 m. The researchers achieved a teleportation fidelity of F= 0.689±0.004, which exceeded the asymptotic no-cloning threshold, preventing the use of classical error correction methods on quantum states. The quantum state of the teleported state was preserved to open the avenue towards unconditional security in microwave quantum communication.

Quantum teleportation (QT).

The promise of quantum communication is based on the delivery of efficient and unconditionally secure ways to exchange information by exploring the quantum laws of physics. Quantum teleportation (QT) is an exemplary protocol that stands out to allow the disembodied and safe transfer of unknown quantum states using quantum entanglement and classical communication as resources. Recent progress in quantum computation with superconducting circuits has led to quantum communication between spatially separated superconducting processes functioning at microwave length frequencies. Methods to achieve this communication task includes the propagation of two-mode squeezed (TMS) microwaves to entangle remote qubits and teleport microwave states to interface between remote superconducting systems. Fedorov et al. demonstrated the deterministic QT of coherent microwave states by exploring two-mode squeezing and analog feedforward across a distance of 0.

Today, technical decision-makers at companies, whether big or small, try to look for flexible ways to speed up application development and ensure long-term scalability for their engineering teams. Configuring solutions such as AWS requires a team of in-house experts, which is expensive and takes time to build. In fact, more than 77% of all tech companies run into DevOps challenges across the board, including cost, risks, security, optimization of the deployment pipeline, and scaling.

San Francisco-based Zeet, a platform that solves DevOps challenges and accelerates application deployment for startups, has raised $2 million in a seed round of funding led by venture capital firm Race Capital. The company plans to use the funding, which also saw participation from GGV Capital, Founders Inc, and multiple engineering leaders, to build out its teams across areas ranging from engineering to marketing and meet growing demand from customers.

Founded in 2020 by Johnny Dallas and Zihao Zhang, Zeet strives to tackle these bottlenecks through automation. The solution connects to a cloud account and automates traditionally manual DevOps tasks, allowing a team to quickly go from code to a scalable application.

A number of four-legged robot dogs made by companies like Boston Dynamics, Anybotics and Ghost Robotics have been deployed in the workforce already for applications like inspections, security and public safety among others. At their core, these four-legged robots are mobility platforms that can be equipped with different payloads depending on the type of information that companies want to gather.

Experts predict the insurance industry alone will spend $1.7 billion on robotics systems in 2025. And other industries may follow suit. Amid the pandemic, a tight job market is forcing many companies to turn to automation. A survey done in December of 2020 by McKinsey, showed that 51 percent of respondents in North America and Europe said they had increased investment in new technologies during 2020, not including remote-work technologies.

» Subscribe to CNBC: https://cnb.cx/SubscribeCNBC
» Subscribe to CNBC TV: https://cnb.cx/SubscribeCNBCtelevision.
» Subscribe to CNBC Classic: https://cnb.cx/SubscribeCNBCclassic.

About CNBC: From ‘Wall Street’ to ‘Main Street’ to award winning original documentaries and Reality TV series, CNBC has you covered. Experience special sneak peeks of your favorite shows, exclusive video and more.

Connect with CNBC News Online.
Get the latest news: https://www.cnbc.com/
Follow CNBC on LinkedIn: https://cnb.cx/LinkedInCNBC
Follow CNBC News on Facebook: https://cnb.cx/LikeCNBC
Follow CNBC News on Twitter: https://cnb.cx/FollowCNBC
Follow CNBC News on Instagram: https://cnb.cx/InstagramCNBC

#CNBC

Quantum effects in superconductors could give semiconductor technology a new twist. Researchers at the Paul Scherrer Institute PSI and Cornell University in New York State have identified a composite material that could integrate quantum devices into semiconductor technology, making electronic components significantly more powerful. They publish their findings today in the journal Science Advances.

Our current electronic infrastructure is based primarily on semiconductors. This class of materials emerged around the middle of the 20th century and has been improving ever since. Currently, the most important challenges in semiconductor electronics include further improvements that would increase the bandwidth of data transmission, energy efficiency and information security. Exploiting is likely to be a breakthrough.

Quantum effects that can occur in superconducting materials are particularly worthy of consideration. Superconductors are materials in which the electrical resistance disappears when they are cooled below a certain temperature. The fact that quantum effects in superconductors can be utilized has already been demonstrated in first quantum computers.

While AI can provide real-time analysis of enormous amounts of data, an AI system coupled with blockchain technology can provide a transparent data governance model for quicker validation amongst various stakeholders through smart contracts and DAOs.

Blockchain benefits can address AI’s shortcomings

Applying the benefits of blockchain technology can help address various shortcomings of AI and help in increasing people’s trust in AI-based applications. With Blockchain, AI applications acquire the qualities of decentralization, distributed data governance, data immutability, transparency, security, and real-time accountability. Many AI-enabled intelligent systems are criticized for their lack of security and trust levels. Blockchain technology can essentially help in addressing the security and trust deficit issues to a significant extent. Enormous challenges remain for both blockchain technology and Artificial Intelligence. Still, when combined, they display tremendous potential and will complement each other to restore the trust factor and improve efficiency at large.

Italian company FlyingBasket has reached an important milestone for the future of urban air mobility (UAM), performing the first urban area flight operation in the Italian city of Torino (Turin). The flight was part of a logistic demonstration in collaboration with Leonardo, an Italian global high-technology company, among the top world players in Aerospace, Defense, and Security, and Poste Italiane, the Italian postal service provider.

FlyingBasket’s FB3 eVTOL cargo drone with 100 kg payload capability has been in commercial operation for a year now since it received the first operational authorization to perform complex logistic missions in sparsely populated areas. During the demonstration, two FB3 heavy lift drones transported delivery packages over the Stura di Lanzo river. One drone with a cargo compartment and another with a sling payload carried 26 Kg each over a 3.9 Km distance to the destination (total flight 7 Km).

The sling payload with a cargo hook makes convenient delivery possible without the need for landing infrastructure whereas, the cargo compartment is designed to facilitate easier cargo handling, keeping it more protected from the elements during the flight. The demonstration set out a compelling instance for beyond pilots’ visual line of sight, or BVLOS flights in the advanced air mobility (AAM) context. The objective of the operation was to demonstrate the fast, efficient, and safe use of heavy-lift UAVs for freight hauling – in this instance, above a major urban center for the first time ever in Italy.