Check out all the on-demand sessions from the Intelligent Security Summit here.
Hyperbole aside, we have only scratched the surface of what the new technology may eventually become. ChatGPT has the markings of artificial narrow intelligence (ANI). That is, AI that is designed to perform specific tasks.
SUMMARY Researchers at the George Washington University, together with researchers at the University of California, Los Angeles, and the deep-tech venture startup Optelligence LLC, have developed an optical convolutional neural network accelerator capable of processing large amounts of information, on the order of petabytes, per second. This innovation, which harnesses the massive parallelism of light, heralds a new era of optical signal processing for machine learning with numerous applications, including in self-driving cars, 5G networks, data-centers, biomedical diagnostics, data-security and more.
THE SITUATION Global demand for machine learning hardware is dramatically outpacing current computing power supplies. State-of-the-art electronic hardware, such as graphics processing units and tensor processing unit accelerators, help mitigate this, but are intrinsically challenged by serial data processing that requires iterative data processing and encounters delays from wiring and circuit constraints. Optical alternatives to electronic hardware could help speed up machine learning processes by simplifying the way information is processed in a non-iterative way. However, photonic-based machine learning is typically limited by the number of components that can be placed on photonic integrated circuits, limiting the interconnectivity, while free-space spatial-light-modulators are restricted to slow programming speeds.
THE SOLUTION To achieve a breakthrough in this optical machine learning system, the researchers replaced spatial light modulators with digital mirror-based technology, thus developing a system over 100 times faster. The non-iterative timing of this processor, in combination with rapid programmability and massive parallelization, enables this optical machine learning system to outperform even the top-of-the-line graphics processing units by over one order of magnitude, with room for further optimization beyond the initial prototype.
Is Director of the Division of Research, Innovation and Ventures (DRIVe — https://drive.hhs.gov/) at the Biomedical Advanced Research and Development Authority (https://aspr.hhs.gov/AboutASPR/ProgramOffices/BARDA/Pages/default.aspx), a U.S. Department of Health and Human Services (HHS) office responsible for the procurement and development of medical countermeasures, principally against bioterrorism, including chemical, biological, radiological and nuclear (CBRN) threats, as well as pandemic influenza and emerging diseases.
Dr. Patel is committed to advancing high-impact science, building new products, and launching collaborative programs and initiatives with public and private organizations to advance human health and wellness. As the DRIVe Director, Dr. Patel leads a dynamic team built to tackle complex national health security threats by rapidly developing and deploying innovative technologies and approaches that draw from a broad range of disciplines.
Dr. Patel brings extensive experience in public-private partnerships to DRIVe. Prior to joining the DRIVe team, he served as the HHS Open Innovation Manager. In that role, he focused on advancing innovative policy and funding solutions to complex, long-standing problems in healthcare. During his tenure, he successfully built KidneyX, a public-private partnership to spur development of an artificial kidney, helped design and execute the Advancing American Kidney Health Initiative, designed to catalyze innovation, double the number of organs available for transplant, and shift the paradigm of kidney care to be patient-centric and preventative, and included a Presidential Executive Order signed in July 2019. He also created the largest public-facing open innovation program in the U.S. government with more than 190 competitions and $45 million in awards since 2011.
Prior to his tenure at HHS, Dr. Patel co-founded Omusono Labs, a 3D printing and prototyping services company based in Kampala, Uganda; served as a scientific analyst with Discovery Logic, (a Thomson Reuters company) a provider of systems, data, and analytics for real-time portfolio management; and was a Mirzayan Science and Technology Policy Fellow at The National Academies of Science, Engineering, and Medicine. He also served as a scientist at a nanotechnology startup, Kava Technology.
Dr. Patel holds a US patent issued in 2005 and has authored over a dozen peer-reviewed articles in areas such as nanotechnology, chemistry, innovation policy, and kidney health.
Dr. Patel earned his Ph.D. in physical chemistry from the Georgia Institute of Technology, and has a bachelor’s degree in chemistry from Washington University in St. Louis.
Dr. Renee Wegrzyn, Ph.D. is the inaugural director of the Advanced Research Projects Agency for Health (ARPA-H — https://arpa-h.gov/), an agency that supports the development of high-impact research to drive biomedical and health breakthroughs to deliver transformative, sustainable, and equitable health solutions for everyone. ARPA-H’s mission focuses on leveraging research advances for real world impact.
Previously, Dr. Wegrzyn served as a vice president of business development at Ginkgo Bioworks and head of Innovation at Concentric by Ginkgo, where she focused on applying synthetic biology to outpace infectious diseases—including Covid-19—through biomanufacturing, vaccine innovation and biosurveillance of pathogens at scale.
Prior to Ginkgo, Dr. Wegrzyn was program manager in the Biological Technologies Office at DARPA, where she leveraged the tools of synthetic biology and gene editing to enhance biosecurity, promote public health and support the domestic bioeconomy. Her DARPA portfolio included the Living Foundries: 1,000 Molecules, Safe Genes, Preemptive Expression of Protective Alleles and Response Elements and the Detect it with Gene Editing Technologies programs.
Dr. Wegrzyn received the Superior Public Service Medal for her work and contributions at DARPA. Prior to joining DARPA, she led technical teams in private industry in the areas of biosecurity, gene therapies, emerging infectious disease, neuromodulation, synthetic biology, as well as research and development teams commercializing multiplex immunoassays and peptide-based disease diagnostics.
Dr. Wegrzyn holds doctorate and bachelor’s degrees in applied biology from the Georgia Institute of Technology. She was a fellow in the Center for Health Security Emerging Leaders in Biosecurity Initiative and completed postdoctoral training as an Alexander von Humboldt fellow in Heidelberg, Germany.
Check out all the on-demand sessions from the Intelligent Security Summit here.
Since its launch in 2020, Generative Pre-trained Transformer 3 (GPT-3) has been the talk of the town. The powerful large language model (LLM) trained on 45 TB of text data has been used to develop new tools across the spectrum — from getting code suggestions and building websites to performing meaning-driven searches. The best part? You just have to enter commands in plain language.
GPT-3’s emergence has also heralded a new era in scientific research. Since the LLM can process vast amounts of information quickly and accurately, it has opened up a wide range of possibilities for researchers: generating hypotheses, extracting information from large datasets, detecting patterns, simplifying literature searches, aiding the learning process and much more.
Monica P. Medina (https://www.state.gov/biographies/monica-p-medina/) is Assistant Secretary for the Bureau of Oceans and International Environmental and Scientific Affairs at the U.S. Department of State. She was also recently appointed as United States Special Envoy for Biodiversity and Water Resources.
Previously, Secretary Medina was an adjunct professor at Georgetown University’s School of Foreign Service. She was also a Senior Associate on the Stephenson Ocean Security Project at the Center for Strategic and International Studies, and Co-Founder and Publisher of Our Daily Planet, an e-newsletter on conservation and the environment.
A former Principal Deputy Under Secretary of Commerce for Oceans and Atmosphere, Secretary Medina served as General Counsel of the National Oceanic and Atmospheric Administration (NOAA), and Special Assistant to the Secretary of Defense. Earlier in her career, Secretary Medina served as the Senior Counsel to former Senator Max Baucus on the Senate Environment and Public Works Committee, as the Senior Director for Ocean Policy at the National Geographic Society, as the ocean lead at the Walton Family Foundation, and in senior roles in other environmental organizations.
Secretary Medina attended college on an Army R.O.T.C. scholarship and began her career on active duty in the Army General Counsel’s Office. She received the Department of Defense Medal for Distinguished Public Service and the Army Meritorious Service Medal. She has a Bachelor’s degree in history from Georgetown University and a J.D. from Columbia Law School.
Check out all the on-demand sessions from the Intelligent Security Summit here.
According to new reporting from the Financial Times, Google has invested $300 million in one of the most buzzy OpenAI rivals, Anthropic, whose recently-debuted generative AI model Claude is considered competitive with ChatGPT.
According to the reporting, Google will take a stake of around 10% and Anthropic will be required to use the money to buy computing resources from Google Cloud. The new funding will value the San Francisco-based company at around $5 billion.
A group of McKinsey’s technology practice leaders have taken a look at what 2023 might hold, and offer a few new year’s tech resolutions to consider: 1) Look for combinatorial trends, in which the sum impact of new technologies create new opportunities. 2) Prep boards for tipping point technologies. 3) Relieve the bureaucratic burden on your engineers to increase their productivity. 4) Look for new opportunities in the cloud. 5) Take advantage of how the cloud is changing security. 6) Take advantage of decentralized AI capabilities — and what this technology might mean for your business model.
Page-utils class= article-utils—vertical hide-for-print data-js-target= page-utils data-id= tag: blogs.harvardbusiness.org, 2007/03/31:999.346784 data-title= Where Is Tech Going in 2023? data-url=/2023/01/where-is-tech-going-in-2023 data-topic= AI and machine learning data-authors= Aamer Baig; Jan Shelly Brown; William Forrest; Vinayak HV; Klemens Hjartar; Lareina Yee data-content-type= Digital Article data-content-image=/resources/images/article_assets/2023/01/Jan23_06_1405011898-383x215.jpg data-summary=
Six trends that will define the next year, according to McKinsey experts.