Menu

Blog

Archive for the ‘physics’ category: Page 159

Jan 30, 2022

New research debunks a popular method for interstellar travel

Posted by in categories: materials, physics

In the 1960s, American physicist Robert W. Bussard proposed a radical idea for interstellar travel: a spacecraft that relied on powerful magnetic fields to harvest hydrogen directly from the interstellar medium.


As it’s come to be known, the Bussard Ramjet has since been popularized by hard science fiction writers like Poul Anderson, Larry Niven, Vernor Vinge, and science communicators like Carl Sagan. Unfortunately, a team of physicists recently analyzed the concept in more detail and concluded that Bussard’s idea is not practical. At a time when interstellar travel looks destined to become a real possibility, this analysis might seem like a wet blanket but is more of a reality check.

Continue reading “New research debunks a popular method for interstellar travel” »

Jan 29, 2022

Creating frequency combs in microresonators

Posted by in categories: physics, transportation

For the first time, scientists were able to create ultrashort dark and bright light pulses that are linked together in tiny glass rings called microresonators. Each of the flashes consist of many different, precisely defined colors: a frequency comb. The combination of the pulses increases the color range of the emitted light from the microresonators. This new light source helps to make more precise sensors to trace for example lowest quantities of explosives at an airport or for distance sensors in autonomous cars to detect obstacles on a street.

It sounds like magic: Laser light of only one color produce a rainbow of many different colors. Scientists are able to produce this strange effect in microresonators, small disks made of glass. If they send a pulsed laser beam into these structures, ultrashort packets of light waves are running in its interior in circles. And start to send out light of different, evenly spaced frequencies like the teeth of a . The invention of the optical comb was awarded with the Nobel Prize in Physics in 2005.

Now, researcher from the Max-Planck-Institute for the Science of Light (MPL) in Erlangen and the Imperial College London were able to produce for the first time an even stranger effect: By directing two Laser beams of slightly different infrared light at the outer rim of the microresonator they got two wave packets, called solitons: one bright and one dark, which run in circles. A dark pulse means having a constant light signal that goes dark for a very short time. Both dark and bright pulses only last for 1/1013 th of a second.

Jan 29, 2022

Scientists Create Synthetic Dimensions To Better Understand the Fundamental Laws of the Universe

Posted by in categories: physics, space

Humans experience the world in three dimensions, but a collaboration in Japan has developed a way to create synthetic dimensions to better understand the fundamental laws of the Universe and possibly apply them to advanced technologies.

They published their results today (January 28, 2022) in Science Advances.

“The concept of dimensionality has become a central fixture in diverse fields of contemporary physics and technology in past years,” said paper author Toshihiko Baba, professor in the Department of Electrical and Computer Engineering, Yokohama National University. “While inquiries into lower-dimensional materials and structures have been fruitful, rapid advances in topology have uncovered a further abundance of potentially useful phenomena depending on the dimensionality of the system, even going beyond the three spatial dimensions available in the world around us.”

Jan 28, 2022

Shining a light on synthetic dimensions

Posted by in categories: physics, space

Humans experience the world in three dimensions, but a collaboration in Japan has developed a way to create synthetic dimensions to better understand the fundamental laws of the universe and possibly apply them to advanced technologies.

They published their results on January 28, 2022 in Science Advances.

“The concept of dimensionality has become a central fixture in diverse fields of contemporary physics and technology in past years,” said paper author Toshihiko Baba, professor in the Department of Electrical and Computer Engineering, Yokohama National University. “While inquiries into lower-dimensional materials and structures have been fruitful, rapid advances in topology have uncovered a further abundance of potentially useful phenomena depending on the dimensionality of the system, even going beyond the three available in the world around us.”

Jan 28, 2022

On this recent Metaverse News Network night, I’m interviewed by the host Richard Mourant and co-host Shauna Lee Lange

Posted by in categories: computing, cosmology, existential risks, physics, singularity, space travel, transhumanism

Topics include the prospects of technological acceleration, Metaverse development and immersive computing, transcendence and cybernetic immortality, neurotechnologies and mind uploading, outer and inner space exploration, Global Mind and phase transition of humanity, physics of time and information, consciousness, evolutionary cybernetics, Chrysalis conjecture and Transcension hypothesis, Artificial General Intelligence and cyberhumanity, transhumanism and singularity, Fermi Paradox, Omega Point cosmology, Cybernetic Theory of Mind, and more. https://www.ecstadelic.net/e_news/metaverse-news-network-liv…x-vikoulov #Metaverse #Singularity #Transhumanism #Transcension #Futurism #Cybernetics #SyntellectHypothesis #AlexVikoulov

Jan 27, 2022

Scientists make a new type of optical device using alumina

Posted by in categories: cosmology, physics

Scientists from the Kavli Institute for the Physics and Mathematics of the Universe and the University of Minnesota, Tomotake Matsumura and Shaul Hanany, and their collaborators have made a new type of optical element that will improve the performance of telescopes studying radiation from the Big Bang.

The (CMB) is a relic radiation remnant from the big bang. It reaches our telescopes after traveling 14 billion years since the birth of the Universe. Studying the properties of this radiation, scientists infer the physics of the , how clusters of galaxies form, and the matter and energy content in the Universe. Four Nobel prizes have been awarded for past studies of the CMB.

To study the CMB, telescopes must be tuned to wavelengths in which it is most intense, about 1–3 mm, and they must separate out shorter wavelength radiation that the atmosphere and Milky Way emit. Among the most effective optical elements that absorbs the short wavelength radiation but lets the CMB pass through is alumina, a material made of aluminum and oxygen and that is second in hardness only to diamond. One challenge with using alumina is that it also reflects almost 50% of the radiation impinging on it. Matsumura and Hanany have now come up with a new way to fabricate anti-reflective structures that reduce reflections fifty-fold.

Jan 27, 2022

A Mystery Object in Space Flashed Brilliantly for 3 Months—Then Disappeared

Posted by in categories: physics, space travel

The amazing thing about radio transients is that if you have enough frequency coverage, you can work out how far away they are. This is because lower radio frequencies arrive slightly later than higher ones depending on how much space they’ve traveled through.

Our new discovery lies about 4,000 light years away—very distant, but still in our galactic backyard.

We also found the radio pulses were almost completely polarized. In astrophysics this usually means their source is a strong magnetic field. The pulses were also changing shape in just half a second, so the source has to be less than half a light second across, much smaller than our sun.

Jan 27, 2022

NASA’s First Test to Lower the Sound of Sonic Booms Was Successful

Posted by in categories: nuclear energy, physics, transportation

The Concorde’s successor might be quieter.

NASA has completed the first test of the works on lowering the volume of supersonic flights in an effort to lift the ban on commercial supersonic flights, NASA’s Glenn Research Center announced.

The sonic booms happen when the merge of shock waves, created by breaking the sound barrier at the speed of 767 mph (1,235 kph). The huge amount of sound energy, approximately 110 decibels, generated by sonic booms sounds like thunderclaps or explosions and can be heard from 30 miles (48 km) away, which is why supersonic commercial flights are banned by the Federal Aviation Administration (FAA). physicists confirm that they have achieved a stage in nuclear fusion called “burning plasma”.

Jan 27, 2022

Fusion Scientists Make ‘Burning Plasma’ Breakthrough With 129-Laser Experiment

Posted by in categories: innovation, physics

Jan 27, 2022

How Lecturers Without Borders Shares The Joy Of Science

Posted by in categories: alien life, chemistry, mathematics, nanotechnology, neuroscience, physics, robotics/AI, science, sustainability

If you are a scientist, willing to share your science with curious teens, consider joining Lecturers Without Borders!


Established by three scientists, Luibov Tupikina, Athanasia Nikolau, and Clara Delphin Zemp, and high school teacher Mikhail Khotyakov, Lecturers Without Borders (LeWiBo) is an international volunteer grassroots organization that brings together enthusiastic science researchers and science-minded teens. LeWiBo founders noticed that scientists tend to travel a lot – for fieldwork, conferences, or lecturing – and realized scientists could be a great source of knowledge and inspiration to local schools. To this end, they asked scientists to volunteer for talks and workshops. The first lecture, delivered in Nepal in 2017 by two researchers, a mathematician and a climatologist, was a great success. In the next couple of years, LeWiBo volunteers presented at schools in Russia and Belarus; Indonesia and Uganda; India and Nepal. Then, the pandemic forced everything into the digital realm, bringing together scientists and schools across the globe. I met with two of LeWiBo’s co-founders, physicist Athanasia Nikolaou and math teacher Mikhail Khotyakov, as well as their coordinator, Anastasia Mityagina, to talk about their offerings and future plans.

Julia Brodsky: So, how many people volunteer for LeWiBo at this time?

Continue reading “How Lecturers Without Borders Shares The Joy Of Science” »