Toggle light / dark theme

An innovative nuclear fusion technology that uses no radioactive materials and is calculated capable of “powering the planet for more than 100,000 years”, has been successfully piloted by a US-Japanese team of researchers.

California-based TAE Technologies, working with Japan’s National Institute for Fusion Science (NIFS), have completed first tests of a hydrogen-boron fuel cycle in magnetically-confined plasma, which could generate cleaner, lower cost energy that that produced by the more common deuterium-tritium (D-T) fusion process.

“This experiment offers us a wealth of data to work with and shows that hydrogen-boron has a place in utility-scale fusion power. We know we can solve the physics challenge at hand and deliver a transformational new form of carbon-free energy to the world that relies on this non-radioactive, abundant fuel,” said Michl Binderbauer, CEO of TAE Technologies.

Tiny insects known as sharpshooters excrete by catapulting urine drops at incredible accelerations. Their excretion is the first example of superpropulsion discovered in a biological system.

Saad Bhamla was in his backyard when he noticed something he had never seen before: an insect urinating. Although nearly impossible to see, the insect formed an almost perfectly round droplet on its tail and then launched it away so quickly that it seemed to disappear. The tiny insect relieved itself repeatedly for hours.

It’s generally taken for granted that what goes in must come out, so when it comes to fluid dynamics in animals, the research is largely focused on feeding rather than excretion. But Bhamla, an assistant professor in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology (Georgia Tech), had a hunch that what he saw wasn’t trivial.

The two stars take about 20.5 hours to revolve around each other.

Astrophysicists of the University of California San Diego (UC San Diego) and Northwestern University have discovered the most compact ultracool dwarf binary system known to date using W. M. Keck Observatory on Maunakea, Hawaii Island.

Named LP 413-53AB, this newly discovered system comprises two ultracool dwarfs, the category of stars which are extremely low in mass and emit light mainly in the infrared because of their low temperature.


NASA/JPL Caltech image.

Saad Bhamla was in his backyard when he noticed something he had never seen before: an insect urinating. Although nearly impossible to see, the insect formed an almost perfectly round droplet on its tail and then launched it away so quickly that it seemed to disappear. The tiny insect relieved itself repeatedly for hours.

It’s generally taken for granted that what goes in must come out, so when it comes to fluid dynamics in animals, the research is largely focused on feeding rather than excretion. But Bhamla, an assistant professor in the School of Chemical and Biomolecular Engineering at the Georgia Institute of Technology, had a hunch that what he saw wasn’t trivial.

“Little is known about the fluid dynamics of excretion, despite its impact on the morphology, energetics, and behavior of animals,” Bhamla said. “We wanted to see if this tiny insect had come up with any clever engineering or physics innovations in order to pee this way.”

Physicists in West Virginia have announced a potential breakthrough that could help upend a longstanding constraint imposed by the first law of thermodynamics.

The discovery, involving how energy is converted in plasmas in space, was described in new research published in the journal Physical Review Letters, and could potentially require scientists to have to rethink how plasmas are heated both in the lab and in space.

The first law of thermodynamics, an expression of the law of conservation of energy albeit styled with relation to thermodynamic processes, conveys that the total energy within a system will remain constant, but that it can be converted from one form of energy into another. More simply, the idea is commonly expressed as “energy can neither be created or destroyed.”

Atomic nuclei take a range of shapes, from spherical (like a basketball) to deformed (like an American football). Spherical nuclei are often described by the motion of a small fraction of the protons and neutrons, while deformed nuclei tend to rotate as a collective whole.

A third kind of motion has been proposed since the 1950s. In this motion, known as nuclear vibration, fluctuate about an average shape. Scientists recently investigated cadmium-106 using a technique called Coulomb excitation to probe its . They found clear experimental evidence that the vibrational description fails for this isotope’s nucleus. This finding is counter to the expected results.

Research published in Physics Letters B builds on a long quest to understand the transition between spherical and deformed . This transition often includes vibrational motion as an intermediate step. The new result suggests that may need to revise the long-standing paradigm describing how this transition occurs.

Recently, a research team led by Prof. Guo Guangcan from the University of Science and Technology of China (USTC) constructed a non-Hermiticity (NH) synthetic orbital angular momentum (OAM) dimension in a degenerate optical cavity and observed the exceptional points (EPs). This study was published in Science Advances.

In topological physics, the NH systems depict open systems with complex spectra. Exceptional points are one of the unique features of NH systems. To study EPs, the team had constructed synthetic one-dimensional lattices and established topological simulation platform in a degenerate optical cavity. Based on this platform, an additional pseudomomentum was introduced as a parameter to construct the Dirac point in the two-dimensional momentum space. A pair of EPs can be obtained by introducing non-Hermitian perturbation around the Dirac point.

The detection of complex energy spectra in NH systems can be troublesome for traditional means. The research group developed a method which is referred to as wave front angle–resolved band structure spectroscopy to investigate complex energy spectra based on synthetic OAM. Using this method, the team not only detected EPs in momentum space, but also the key features of EPs like bulk Fermi arcs, parity-time symmetry-breaking transition, energy swapping and half-integer band windings.

Thank you to Brilliant for Supporting PBS. To learn more go to https://brilliant.org/SpaceTime/

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Physics progresses by breaking our intuitions, but we’re now at a point where further progress may require us to do away with the most intuitive and seemingly fundamental concepts of all—space and time.