Toggle light / dark theme

Rethinking neutron star mergers: Study explores the effects of magnetic fields on their oscillating frequencies

Neutron star mergers are collisions between neutron stars, the collapsed cores of what were once massive supergiant stars. These mergers are known to generate gravitational waves, energy-carrying waves propagating through a gravitational field, which emerge from the acceleration or disturbance of a massive body.

Collisions between neutron stars have been the topic of many theoretical physics studies, as a deeper understanding of these events could yield interesting insights into how matter behaves at extreme densities. The behavior of matter at extremely high densities is currently described by a known as the equation of state (EoS).

Recent astrophysics research has explored the possibility that EoS features, such as or a quark-hadron crossover, could be inferred from the gravitational wave spectrum observed after neuron stars have merged. However, most of these theoretical works did not consider the effects of magnetic fields on this spectrum.

Quantum Telepathy Goes Real: How Lasers and Ions Outsmarted Logic

Physicists have successfully played a mind-bending “quantum game” using a real-world quantum computer, in which lasers shuffle around ions on a chip to explore the strange behavior of qubits. By creating a special, knotted structure of entangled particles, the team demonstrated that today’s quant

New hybrid materials boost energy conversion by 100 percent

“In solid matter, heat is transferred both by mobile charge carriers and by vibrations of the atoms in the crystal lattice,” Garmroudi says, emphasizing that researchers have devised advanced techniques to engineer thermoelectric materials with exceptionally low thermal conductivity over the past few decades.

“In thermoelectric materials, we mainly try to suppress heat transport through the lattice vibrations, as they do not contribute to energy conversion,” he adds.

Garmroudi recalls developing the novel hybrid materials during his research stay in Tsukuba, Japan, supported by the Lions Award and carried out at the National Institute for Materials Science as part of his work at TU Wien (Vienna University of Technology).

Can Quantum Gravity Be Created in the Lab?

Quantum gravity is one of the biggest unresolved and challenging problems in physics, as it seeks to reconcile quantum mechanics, which governs the microscopic world, and general relativity, which describes the macroscopic world of gravity and space-time.

Efforts to understand quantum gravity have been focused almost entirely at the theoretical level, but Monika Schleier-Smith at Stanford University has been exploring a novel experimental approach — trying to create quantum gravity from scratch. Using laser-cooled clouds of atoms, she is testing the idea that gravity might be an emergent phenomenon arising from quantum entanglement.

In this episode of The Joy of Why podcast, Schleier-Smith discusses the thinking behind what she admits is a high-risk, high-reward approach, and how her experiments could provide important insights about entanglement and quantum mechanical systems even if the end goal of simulating quantum gravity is never achieved.

/* */