Toggle light / dark theme

Quantum Teleportation Just Happened For Real

I remember when this was announced last year; however, I am glad to see the topic highlighted again especially after China’s launch of their Quantum Satellite.


Quantum teleportation is the mystical, far-off in the future idea where quantum information encoded into particles of light can be transferred from one place to another remotely. Except it’s not far-off in the future — it just happened. Teleportation is real and it is here.

The teleportation occurred over several kilometres of optical fibre networks in the cities of Hefei in China and Calgary in Canada.

The two independent studies show that quantum teleportation across metropolitan networks is technologically feasible, and pave the way towards future city-scale quantum technologies and communications networks, such as a quantum internet.

Science breakthrough – light particles teleported across cities

Scientists have shown they can teleport matter across a city, a development that has been hailed as “a technological breakthrough”.

However, do not expect to see something akin to the Star Trek crew beaming from the planet’s surface to the Starship Enterprise.

Instead, in the two studies, published today in Nature Photonics, separate research groups have used quantum teleportation to send photons to new locations using fibre-optic communications networks in the cities of Hefei in China and Calgary in Canada.

Carbon-coated iron catalyst structure could lead to more-active fuel cells

Abstract: Fuel cells have long held promise as power sources, but low efficiency has created obstacles to realizing that promise. Researchers at the University of Illinois and collaborators have identified the active form of an iron-containing catalyst for the trickiest part of the process: reducing oxygen gas, which has two oxygen atoms, so that it can break apart and combine with ionized hydrogen to make water. The finding could help researchers refine better catalysts, making fuel cells a more energy- and cost-efficient option for powering vehicles and other applications.

Led by U. of I. chemistry professor Andrew Gewirth, the researchers published their work in the journal Nature Communications.

Iron-based catalysts for oxygen reduction are an abundant, inexpensive alternative to catalysts containing precious metals, which are expensive and can degrade. However, the process for making iron-containing catalysts yields a mixture of different compounds containing iron, nitrogen and carbon. Since the various compounds are difficult to separate, exactly which form or forms behave as the active catalyst has remained a mystery to researchers. This has made it difficult to refine or improve the catalyst.

A tight squeeze for electrons: Quantum effects observed in ‘one-dimensional’ wires

Condensing electrons into Quantum Wires to advance QC on multiple devices as well as other areas of technology.


Researchers have observed quantum effects in electrons by squeezing them into one-dimensional ‘quantum wires’ and observing the interactions between them. The results could be used to aid in the development of quantum technologies, including quantum computing.

Scientists have controlled electrons by packing them so tightly that they start to display quantum effects, using an extension of the technology currently used to make computer processors. The technique, reported in the journal Nature Communications, has uncovered properties of quantum matter that could pave a way to new quantum technologies.

The ability to control electrons in this way may lay the groundwork for many technological advances, including quantum computers that can solve problems fundamentally intractable by modern electronics. Before such technologies become practical however, researchers need to better understand quantum, or wave-like, particles, and more importantly, the interactions between them.

For first time, individual atoms seen keeping away from each other or bunching up as pairs

Scientists have identified a new method in understanding superconductors, and what one should do to make higher-temperature superconductors even at room temperature. This is certainly a huge deal as we continue to look at ways to build QC machines and devices. Something that my friends at Google should be interested in.


“Learning from this model, we can understand what’s really going on in these superconductors, and what one should do to make higher-temperature superconductors, approaching hopefully room temperature,” says Martin Zwierlein, professor of physics and principal investigator in MIT’s Research Laboratory of Electronics. Credit: Illustration: Christine Daniloff/MIT

If you bottle up a gas and try to image its atoms using today’s most powerful microscopes, you will see little more than a shadowy blur. Atoms zip around at lightning speeds and are difficult to pin down at ambient temperatures.

If, however, these atoms are plunged to ultracold temperatures, they slow to a crawl, and scientists can start to study how they can form exotic states of matter, such as superfluids, superconductors, and quantum magnets.

Levitating nanoparticle improves ‘torque sensing’

Researchers have levitated a tiny nanodiamond particle with a laser in a vacuum chamber, using the technique for the first time to detect and measure its “torsional vibration,” an advance that could bring new types of sensors and studies in quantum mechanics.

The experiment represents a nanoscale version of the torsion balance used in the classic Cavendish experiment, performed in 1798 by British scientist Henry Cavendish, which determined Newton’s gravitational constant. A bar balancing two lead spheres at either end was suspended on a thin metal wire. Gravity acting on the two weights caused the wire and bar to twist, and this twisting — or torsion — was measured to calculate the gravitational force.

In the new experiment, an oblong-shaped nanodiamond levitated by a laser beam in a vacuum chamber served the same role as the bar, and the laser beam served the same role as the wire in Cavendish’s experiment.

Lockheed Executive Blows Lid Off of Secret Government Space Travel (Quantum Entanglement)

Another (more in depth) on Lockheed’s efforts on Space Travel leveraging Quantum Entanglement.


It’s called quantum entanglement, it’s extremely fascinating and counter to what we believe to be the known scientific laws of the universe, so much so that Einstein himself could not wrap his head around it. Although it’s called “quantum entanglement,” though Einstein referred to it as “spooky action at a distance.”

Recent research has taken quantum entanglement out of the theoretical realm of physics, and placed into the one of verified phenomena. An experiment devised by the Griffith University’s Centre for Quantum Dynamics, led by Professor Howard Wiseman and his team of researchers at the university of Tokyo, recently published a paper in the journal Nature Communications confirming what Einstein did not believe to be real: the non-local collapse of a particle’s wave function. (source)(source), and this is just one example of many.

They did this by splitting a single photon between two laboratories, and testing whether measurement of it in one laboratory would actually cause a change in the local quantum state in the other laboratory. In doing so, researchers were able to verify the entanglement of the split single photon.

Quantum Mechanics Revisited: Physicists Propose New Structure of Time

Read a little further into the paper, and things get really weird. If the equations of quantum mechanics must be altered in accordance with the new research, then it will give rise to a new and very curious definition of time.

Time is, essentially, a “crystal”—a highly organized lattice of discrete “particles,” or regularly repeating segments.

“The physical universe is really like a movie/motion picture, in which a series of still images shown on a screen creates the illusion of moving images,” said Mir Faizal of the University of Waterloo and the University of Lethbridge in Canada, and lead author of the paper.

Cold plasma will heal non-healing wounds

Russian scientists have found that treating cells with cold plasma leads to their regeneration and rejuvenation. This result can be used to develop a plasma therapy program for patients with non-healing wounds. The paper has been published in the Journal of Physics D: Applied Physics.

Non-healing wounds make it more difficult to provide effective treatment to patients and are therefore a serious problem faced by doctors. These wounds can be caused by damage to blood vessels in the case of diabetes, failure of the immune system resulting from an HIV infection or cancers, or slow cell division in elderly people. Treatment of non-healing wounds by conventional methods is very difficult, and in some cases impossible.

Cold atmospheric-pressure plasma refers to a partially ionized gas—the proportion of charged particles in the gas is close to 1 percent, with a temperature below 100,000 K. Its application in biology and medicine is possible through the advent of plasma sources generating jets at 30–40?°C.

/* */