Toggle light / dark theme

Nice.


Using their advanced atomic clock to mimic other desirable quantum systems, JILA physicists have caused atoms in a gas to behave as if they possess unusual magnetic properties long sought in harder-to-study solid materials. Representing a novel “off-label” use for atomic clocks, the research could lead to the creation of new materials for applications such as “spintronic” devices and quantum computers.

JILA’s record-setting atomic clock, in which strontium atoms are trapped in a laser grid known as an , turns out to be an excellent model for the magnetic behavior of crystalline solids at the atomic scale. Such models are valuable for studying the counterintuitive rules of quantum mechanics.

To create “synthetic” magnetic fields, the JILA team locked together two properties of the clock atoms to create a quantum phenomenon known as spin-orbit coupling. The long lifetime and precision control of the clock atoms enabled researchers to overcome a common problem in other gas-based spin-orbit coupling experiments, namely heating and loss of atoms due to spontaneous changes in atomic states, which interferes with the effects researchers are trying to achieve.

Read more

Back in September 2015, Gooch & Housego reported on our work with cold atom technology on the FreezeRay project. Now, just over a year later, we’re happy to say that Gooch & Housego has successfully won funding for involvement in two further programs, CASPA and REVEAL, in a competition for the commercialization of quantum technologies. The contest is supported by Innovate UK and the UK National Quantum Technologies Programme.

CASPA (Cold Atom Space Payload) has the aim of developing a payload compatible with CubeSat and capable of producing cold atoms in space. As with all such projects, we are breaking new ground here and an effective demonstration of the prototype system – in this instance space will be the crucial first step towards commercializing instrumentation systems capable of recording minuscule changes in the earth’s gravitational strength. Such changes when mapped across the earth’s surface have the potential to be used in resource exploration or to geo-monitoring of polar ice mass, ocean currents and sea level changes.

CASPA will also evaluate the viability of using the technology in the provision of higher precision timing sources for next generation global positioning system (GPS) and also for deep space navigation. The program partners are e2v technologies Ltd, ClydeSpace, XCAM, Covesion, the University of Birmingham and the University of Southampton.

Read more

In a technological tour de force, scientists have developed a new way to probe antimatter.

For the first time, researchers were able to zap antimatter atoms with a laser, then precisely measure the light let off by these strange anti-atoms. By comparing the light from anti-atoms with the light from regular atoms, they hope to answer one of the big mysteries of our universe: Why, in the early universe, did antimatter lose out to regular old matter?

“This represents a historic point in the decades-long efforts to create antimatter and compare its properties to those of matter,” says Alan Kostelecky, a theoretical physicist at Indiana University.

Read more

Verlinde’s emergent gravity theory makes one very important implication: dark matter does not exist. His research makes sense of the behavior of gravity without the need for the existence of a dark matter particle.

Researchers from the Leiden Observatory have studied more than 33,000 galaxies to see if Verlinde’s theory checks out—and the results show that it is, in fact, more accurate at confirming the universe’s gravity distribution than Einstein’s theory of relativity.

Watch the video below to know more about Verlinde’s alternate explanation to gravity.

Read more

Scientists at The Rockefeller University have created the most detailed three-dimensional images to date of an important step in the process by which cells make the nano-machines responsible for producing all-important protein. The results, described December 15 in Science, are prompting the researchers to re-evaluate how they envision this early phase in the construction of ribosomes.

“The structure they determined, shown above, belongs to a particle formally called the “small subunit processome.” Before this particle can fulfill its destiny to become the smaller half of a complete ribosome, the RNA within it needs to be folded, tweaked, and cut.

“Initially, we thought of the small subunit processome as a product on an assembly line, with molecular workers arriving from outside, much like the robots that would put together a car. But that analogy no longer appears apt,” says senior author Sebastian Klinge, head of the Laboratory of Protein and Nucleic Acid Chemistry.

Read more

This is a nice boost for QC and mimics something that should prove interesting for AI and SynBio technology.


Researchers in Aalto University, Finland, and P.L. Kapitza Institute in Moscow have discovered half-quantum vortices in superfluid helium. This vortex is a topological defect, exhibited in superfluids and superconductors, which carries a fixed amount of circulating current.

‘This discovery of half-quantum vortices culminates a long search for these objects originally predicted to exist in superfluid helium in 1976,’ says Samuli Autti, Doctoral Candidate at Aalto University in Finland.

‘In the future, our discovery will provide access to the cores of half-quantum vortices, hosting isolated Majorana modes, exotic solitary particles. Understanding these modes is essential for the progress of quantum information processing, building a quantum computer,’ Autti continues.

Read more

This is a BIG DEAL in QC, and Russian Scientists solved it.


Abstract: Scientists from the Institute of Physics and Technology of the Russian Academy of Sciences and MIPT have let two electrons loose in a system of quantum dots to create a quantum computer memory cell of a higher dimension than a qubit (a quantum bit). In their study published in Scientific Reports, the researchers demonstrate for the first time how quantum walks of several electrons can help to implement quantum computation.

“By studying the system with two electrons, we solved the problems faced in the general case of two identical interacting particles. This paves the way toward compact high-level quantum structures,” comments Leonid Fedichkin, Expert at the Russian Academy of Sciences, Vice-Director for Science at NIX (a Russian computer company), and Associate Professor at MIPT’s Department of Theoretical Physics.

In a matter of hours, a quantum computer would be able to hack through the most popular cryptosystem used even in your web browser. As far as more benevolent applications are concerned, a quantum computer would be capable of molecular modeling that takes into account all interactions between the particles involved. This in turn would enable the development of highly efficient solar cells and new drugs. To have practical applications, a quantum computer needs to incorporate hundreds or even thousands of qubits. And that is where it gets tricky.

Read more

In Brief A deeper look into studies that were previously conducted by Hungarian physicists has recently uncovered evidence of a fifth fundamental force of nature. If confirmed, it could stand as an explanation for dark matter.

To date, there are four conventionally known fundamental forces that hold the universe together—gravity, electromagnetism, and the strong and weak nuclear forces. But a closer look at previous studies conducted by Hungarian physicists, which hinted at a new force, has led a team of scientists to evidence that the anomaly in the data could actually be a fifth force of nature.

It should be noted that the groundbreaking claim is still a very long way from being confirmed, but the current data available is enough to push research into what this new force-carrying particle is (or may be).

Read more

Researchers at University of California, Santa Barbara, have designed a functional nanoscale computing element that could be packed into a space no bigger than 50 nanometres on any side.

red blood cell nanotechnology nanotech future timeline

In 1959, renowned physicist Richard Feynman, in his talk “Plenty of Room at the Bottom” spoke of a future in which tiny machines could perform huge feats. Like many forward-looking concepts, his molecule and atom-sized world remained for years in the realm of science fiction. And then, scientists and other creative thinkers began to realise Feynman’s nanotechnological visions.

Read more

Thermoelectric generators convert heat or cold to electricity (and vice-versa). Normally solid-state devices, they can be used in such things as power plants to convert waste heat into additional electrical power, or in small cooling systems that do not need compressors or liquid coolant. However the rigid construction of these devices generally limits their use to flat, even surfaces. In an effort to apply thermal generation capabilities to almost any shape, scientists at the Ulsan National Institute of Science and Technology (UNIST) in Korea claim to have created a thermoelectric coating that can be directly painted onto most surfaces.

Variously known as the Peltier, Seebeck, or Thomson effect, the thermoelectric effect is seen in semiconductor devices that create a voltage when a different temperature is present on each side or, when a voltage is applied to the device, it creates a temperature difference between the two sides. In this instance, the new paint created by the UNIST researchers is used specifically to heat a surface when a voltage is applied.

The specially-formulated inorganic thermoelectric paint was created using Bi2Te3 (bismuth telluride) and Sb2Te3 (antimony telluride) particles to create two types of semiconducting material. To test the resultant mixture, the researchers applied alternate p-type (positive) and n-type (negative) layers of the thermoelectric semiconductor paint on a metal dome with electrodes at the top and the base of the dome.

Read more