Menu

Blog

Archive for the ‘particle physics’ category: Page 396

Jul 13, 2020

Scientists demonstrate a new experiment in the search for theorized ‘neutrinoless’ proc

Posted by in categories: materials, particle physics

Nuclear physicists affiliated with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) played a leading role in analyzing data for a demonstration experiment that has achieved record precision for a specialized detector material.

The CUPID-Mo experiment is among a field of experiments that are using a variety of approaches to detect a theorized particle process, called neutrinoless double-beta decay, that could revise our understanding of ghostly particles called neutrinos, and of their role in the formation of the universe.

The preliminary results from the CUPID-Mo experiment, based on the Berkeley Lab-led analysis of data collected from March 2019 to April 2020, set a new world-leading limit for the neutrinoless double-beta decay process in an isotope of molybdenum known as Mo-100. Isotopes are forms of an element that carry a different number of uncharged particles called neutrons in their atomic nuclei.

Jul 12, 2020

Rock ’n’ Control: Physicists Use Oscillations of Atoms to Control a Phase Transition

Posted by in categories: chemistry, particle physics

The goal of “Femtochemistry” is to film and control chemical reactions with short flashes of light. Using consecutive laser pulses, atomic bonds can be excited precisely and broken as desired. So far, this has been demonstrated for selected molecules. Researchers at the University of Göttingen and the Max Planck Institute for Biophysical Chemistry have now succeeded in transferring this principle to a solid, controlling its crystal structure on the surface. The results have been published in the journal Nature.

The team, led by Jan Gerrit Horstmann and Professor Claus Ropers, evaporated an extremely thin layer of indium onto a silicon crystal and then cooled the crystal down to −220 degrees Celsius. While the indium atoms form conductive metal chains on the surface at room temperature, they spontaneously rearrange themselves into electrically insulating hexagons at such low temperatures. This process is known as the transition between two phases – the metallic and the insulating – and can be switched by laser pulses. In their experiments, the researchers then illuminated the cold surface with two short laser pulses and immediately afterwards observed the arrangement of the indium atoms using an electron beam. They found that the rhythm of the laser pulses has a considerable influence on how efficiently the surface can be switched to the metallic state.

This effect can be explained by oscillations of the atoms on the surface, as first author Jan Gerrit Horstmann explains: “In order to get from one state to the other, the atoms have to move in different directions and in doing so overcome a sort of hill, similar to a roller coaster ride. A single laser pulse is not enough for this, however, and the atoms merely swing back and forth. But like a rocking motion, a second pulse at the right time can give just enough energy to the system to make the transition possible.” In their experiments, the physicists observed several oscillations of the atoms, which influence the conversion in very different ways.

Jul 12, 2020

What Is Intelligence? Where Does it Begin?

Posted by in categories: education, neuroscience, particle physics

You can find our beautiful education posters in our shop: https://shop.kurzgesagt.org

This video was made possible by a grant from the Templeton World Charity Foundation.

Continue reading “What Is Intelligence? Where Does it Begin?” »

Jul 12, 2020

Light “Hypernucleus” Predicted to Be Stable Despite Having Two Strange Quarks

Posted by in categories: particle physics, space

Calculations predict that a light ‘hypernucleus’ containing a particle with two strange quarks will be stable

Adding an exotic particle known as a Xi hyperon to a helium nucleus with three nucleons could produce a nucleus that is temporarily stable, calculations by RIKEN nuclear physicists have predicted. This result will help experimentalists search for the nucleus and provide insights into both nuclear physics and the structure of neutron stars.

Normal atomic nuclei consist of protons and neutrons, which are collectively known as nucleons. Each proton and neutron in turn is made up of three quarks. Quarks come in six types: up, down, strange, charm, bottom and top. But protons and neutrons consist only of up and down quarks.

Jul 11, 2020

Magnetic memory states go exponential

Posted by in categories: computing, nanotechnology, particle physics

In a new study, a group of researchers led by Prof. Lior Klein, from the physics department and the Institute of Nanotechnology and Advanced Materials at Bar-Ilan University, has shown that relatively simple structures can support an exponential number of magnetic states—much greater than previously thought. They have additionally demonstrated switching between the states by generating spin currents. Their results may pave the way to multi-level magnetic memory with an extremely large number of states per cell; it could also have application in the development of neuromorphic computing, and more. Their research appears as a featured article on the cover of a June issue of Applied Physics Letters.

Spintronics is a thriving branch of nano-electronics which uses the spin of the electron and its associated in addition to the electron charge used in traditional electronics. The main practical contributions of spintronics are in magnetic sensing and non-volatile magnetic data storage, and researchers are pursuing breakthroughs in developing magnetic-based processing and novel types of .

Spintronics devices commonly consist of magnetic elements manipulated by spin-polarized currents between stable magnetic states. When spintronic devices are used for storing data, the number of stable states sets an upper limit on capacity. While current commercial magnetic memory cells have two stable magnetic states corresponding to two memory states, there are clear advantages to increasing this number, as it will potentially allow increasing memory density and enable the design of novel types of memory.

Jul 11, 2020

MIT’s New Diamond-Based Quantum Chip Is the Largest Yet

Posted by in categories: computing, particle physics, quantum physics

Researchers at MIT have developed a process to manufacture and integrate “artificial atoms” with photonic circuitry, and in doing so, are able to produce the largest quantum chip of its kind.

The atoms, which are created by atomic-scale defects in microscopically thin slices of diamond, allow for the scaling up of quantum chip production.

RELATED: 7 REASONS WHY WE SHOULD BE EXCITED BY QUANTUM COMPUTERS

Jul 10, 2020

Vollebak Ceramic Clothing System

Posted by in categories: military, particle physics

Designed with former elite military operatives, the Ceramic Clothing System from Vollebak is as hardcore as any extreme conditions you might encounter. It boasts a three-part layering system that is the first in the world to use ceramic technology to make their T-Shirt, Baselayer, and Midlayer. All three are abrasion resistant yet soft, stretchy, breathable and as comfy as your favorite sports clothing. And each Ceramic layer is embedded with over 100,000 particles that can’t be scratched off or washed away.

Jul 9, 2020

Scaling up the quantum chip

Posted by in categories: computing, particle physics, quantum physics

MIT engineers develop a hybrid process that connects photonics with “artificial atoms,” to produce the largest quantum chip of its type.

Jul 9, 2020

Observation of the Quantum Spin Liquid State in Novel Material Advances Spintronics

Posted by in categories: engineering, particle physics, quantum physics

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices.

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a technological revolution by leveraging this newfound knowledge in engineering applications. Spintronics is an emerging field that aims to surpass the limits of traditional electronics by using the spin of electrons, which can be roughly seen as their angular rotation, as a means to transmit information.

But the design of devices that can operate using spin is extremely challenging and requires the use of new materials in exotic states–even some that scientists do not fully understand and have not experimentally observed yet. In a recent study published in Nature Communications, scientists from the Department of Applied Physics at Tokyo University of Science, Japan, describe a newly synthesized compound with the formula KCu6AlBiO4(SO4)5Cl that may be key in understanding the elusive “quantum spin liquid (QSL)” state. Lead scientist Dr Masayoshi Fujihala explains his motivation: “Observation of a QSL state is one of the most important goals in condensed-matter physics as well as the development of new spintronic devices. However, the QSL state in two-dimensional (2D) systems has not been clearly observed in real materials owing to the presence of disorder or deviations from ideal models.”

Jul 8, 2020

Large-scale integration of artificial atoms in hybrid photonic circuits

Posted by in categories: computing, particle physics, quantum physics

A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits1. Colour centres in diamond have emerged as leading solid-state ‘artificial atom’ qubits2,3 because they enable on-demand remote entanglement4, coherent control of over ten ancillae qubits with minute-long coherence times5 and memory-enhanced quantum communication6. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of ‘quantum microchiplets’—diamond waveguide arrays containing highly coherent colour centres—on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters7,8 and general-purpose quantum processors9,10,11,12.