Menu

Blog

Archive for the ‘particle physics’ category: Page 236

Feb 8, 2021

New Electron Trap Might Help Quantum Computers

Posted by in categories: computing, particle physics, quantum physics

Long-time trapping of a single electron could allow the particle to be used as an efficient quantum bit.

Feb 6, 2021

The First Steps Toward a Quantum Brain: An Intelligent Material That Learns by Physically Changing Itself

Posted by in categories: particle physics, quantum physics, robotics/AI

An intelligent material that learns by physically changing itself, similar to how the human brain works, could be the foundation of a completely new generation of computers. Radboud physicists working toward this so-called “quantum brain” have made an important step. They have demonstrated that they can pattern and interconnect a network of single atoms, and mimic the autonomous behavior of neurons and synapses in a brain. They report their discovery in Nature Nanotechnology.

Considering the growing global demand for computing capacity, more and more data centers are necessary, all of which leave an ever-expanding energy footprint. “It is clear that we have to find new strategies to store and process information in an energy efficient way,” says project leader Alexander Khajetoorians, Professor of Scanning Probe Microscopy at Radboud University.

“This requires not only improvements to technology, but also fundamental research in game changing approaches. Our new idea of building a ‘quantum brain’ based on the quantum properties of materials could be the basis for a future solution for applications in artificial intelligence.”

Feb 6, 2021

First images of muon beams

Posted by in category: particle physics

A new technique has taken the first images of muon particle beams. Nagoya University scientists designed the imaging technique with colleagues in Osaka University and KEK, Japan and describe it in the journal Scientific Reports. They plan to use it to assess the quality of these beams, which are being used more and more in advanced imaging applications.

Feb 6, 2021

A full-scale prototype for muon tomography

Posted by in categories: information science, particle physics

Each year, billions of tons of goods are transported globally using cargo containers. Currently, there are concerns that this immense volume of traffic could be exploited to transport illicit nuclear materials, with little chance of detection. One promising approach to combating this issue is to measure how goods interact with charged particles named muons—which form naturally as cosmic rays interact with Earth’s atmosphere. Studies worldwide have now explored how this technique, named “muon tomography,” can be achieved through a variety of detection technologies and reconstruction algorithms. In this article of EPJ Plus, a team headed by Francesco Riggi at the University of Catania, Italy, build on these results to develop a full-scale muon tomograph prototype.

Feb 3, 2021

An atomic Boltzmann machine capable of self-adaption

Posted by in category: particle physics

Stochastic orbital dynamics of individually coupled Co atoms on black phosphorus enables the realization of a Boltzmann machine capable of self-adaption.

Feb 2, 2021

Is Quantum Tunneling the Key to Life and existence of the Universe?

Posted by in categories: information science, particle physics, quantum physics

Get MagellanTV here: https://try.magellantv.com/arvinash and get an exclusive offer for our viewers: an extended, month-long trial, FREE. MagellanTV has the largest and best collection of Science content anywhere, including Space, Physics, Technology, Nature, Mind and Body, and a growing collection of 4K. This new streaming service has 3000 great documentaries. Check out our personal recommendation and MagellanTV’s exclusive playlists: https://www.magellantv.com/genres/science-and-tech.

Become a Patron: https://www.patreon.com/bePatron?u=17543985

Continue reading “Is Quantum Tunneling the Key to Life and existence of the Universe?” »

Feb 2, 2021

Twisted light from the beginning of time could reveal brand-new physics

Posted by in category: particle physics

A new study on the rotation of the universe’s first light could suggest physicists need new rule-breaking subatomic particles.

Feb 1, 2021

Ingenious ‘Wrinkled’ Graphene Could Be The Most Promising Water Filter Yet

Posted by in categories: nanotechnology, particle physics, transportation

Graphene continues to dazzle us with its strength and its versatility – exciting new applications are being discovered for it all the time, and now scientists have found a way of manipulating the wonder material so that it can better filter impurities out of water.

The two-dimensional material comprised of carbon atoms has been studied as a way of cleaning up water before, but the new method could offer the most promising approach yet. It’s all down to the exploitation of what are known as van der Waals gaps: the tiny spaces that appear between 2D nanomaterials when they’re layered on top of each other.

These nanochannels can be used in a variety of ways, which scientists are now exploring, but the thinness of graphene causes a problem for filtration: liquid has to spend much of its time travelling along the horizontal plane, rather than the vertical one, which would be much quicker.

Feb 1, 2021

A Powerful Ion Microscope Developed to Study Quantum Gases

Posted by in categories: particle physics, quantum physics

University of Stuttgart researchers developed a particle-based imaging approach that enables the spatially and temporally resolved investigation of vastly different systems such as ground-state samples, Rydberg ensembles, or cold ions immersed in quantum gases.

The microscope features an excellent time resolution allowing for both the study of dynamic processes and 3D imaging. In contrast to most quantum gas microscopes, this imaging scheme offers an enormous depth of field and is, therefore, not restricted to two-dimensional systems.

The researchers plan to use their new and powerful tool to extend our studies of cold ion-atom hybrid systems and intend to push the collision energies in these systems to the ultracold regime. Using Rydberg molecules to initialize ion-atom collisions, they envision the imaging of individual scattering events taking place in the quantum regime.

Feb 1, 2021

Physicists Guide a Single Ion Through a Bose-Einstein Condensate

Posted by in category: particle physics

Transport processes are ubiquitous in nature but still raise many questions. The research team around Florian Meinert from the 5th Institute of Physics at the University of Stuttgart has now developed a new method that allows them to observe a single charged particle on its path through a dense cloud of ultracold atoms. The results were published in the prestigious journal Physical Review Letters and are subject in a Viewpoint of the accompanying popular science journal Physics.

Meinert‘s team uses a so-called Bose Einstein condensate (BEC) for their experiments. This exotic state of matter consists of a dense cloud of ultracold atoms. By means of sophisticated laser excitation, the researchers create a single Rydberg atom within the gas.

In this giant atom, the electron is a thousand times further away from the nucleus than in the ground state and thus only very weakly bound to the core. With a specially designed sequence of electric field pulses, the researchers snatch the electron away from the atom. The formerly neutral atom turns into a positively charged ion that remains nearly at rest despite the process of detaching the electron.