Menu

Blog

Archive for the ‘particle physics’ category: Page 232

Apr 9, 2022

Fermilab Says Particle Is Heavy Enough to Break the Standard Model

Posted by in categories: cosmology, information science, particle physics, quantum physics

If the W’s excess heft relative to the standard theoretical prediction can be independently confirmed, the finding would imply the existence of undiscovered particles or forces and would bring about the first major rewriting of the laws of quantum physics in half a century.

“This would be a complete change in how we see the world,” potentially even rivaling the 2012 discovery of the Higgs boson in significance, said Sven Heinemeyer, a physicist at the Institute for Theoretical Physics in Madrid who is not part of CDF. “The Higgs fit well into the previously known picture. This one would be a completely new area to be entered.”

The finding comes at a time when the physics community hungers for flaws in the Standard Model of particle physics, the long-reigning set of equations capturing all known particles and forces. The Standard Model is known to be incomplete, leaving various grand mysteries unsolved, such as the nature of dark matter. The CDF collaboration’s strong track record makes their new result a credible threat to the Standard Model.

Apr 9, 2022

Why Scientists Are So Worried About the W Boson Right Now: ‘Something Is Amiss’

Posted by in category: particle physics

And that something could totally change one of the universe’s most fundamental frameworks.

Apr 8, 2022

Researchers at MIT and IBM Propose an Efficient Machine Learning Method That Uses Graph Grammar to Generate New Molecules

Posted by in categories: biological, chemistry, particle physics, robotics/AI

Chemical engineers and materials scientists are continuously looking for the following groundbreaking material, chemical, or medication. The emergence of machine-learning technologies has accelerated the discovery process, which may typically take years. Ideally, the objective is to train a machine-learning model on a few known chemical samples and then let it build as many manufacturable molecules of the same class with predictable physical attributes as feasible. You can develop new molecules with ideal characteristics if you have all of these components and the know-how to synthesize them.

However, current approaches need large datasets for training models. Many class-specific chemical databases only contain a few example compounds, restricting their capacity to generalize and construct biological molecules that might be generated in the real world.

This issue was addressed by a team of researchers from MIT and IBM by employing a generative graph model to create new synthesizable compounds within the same training data’s chemical class. The research was presented in a research paper. They model the production of atoms and chemical bonds as a graph and create a graph grammar — a linguistic analog of systems and structures for word ordering — that provides a set of rules for constructing compounds like monomers and polymers.

Apr 8, 2022

CDF collaboration at Fermilab announces most precise ever measurement of W boson mass to be in tension with the Standard Model

Posted by in categories: nuclear energy, particle physics

The discovery changes our understanding of everything. The world of physics may have been turned on its head.


“While this is an intriguing result, the measurement needs to be confirmed by another experiment before it can be interpreted fully,” said Fermilab Deputy Director Joe Lykken.

The W boson is a messenger particle of the weak nuclear force. It is responsible for the nuclear processes that make the sun shine and particles decay. Using high-energy particle collisions produced by the Tevatron collider at Fermilab, the CDF collaboration collected huge amounts of data containing W bosons from 1985 to 2011.

Continue reading “CDF collaboration at Fermilab announces most precise ever measurement of W boson mass to be in tension with the Standard Model” »

Apr 8, 2022

New data on an elusive particle could upend physics as we know it

Posted by in categories: cosmology, particle physics

The W boson measurement provides insight into the weak nuclear force, and could explain other longstanding mysteries like antimatter imbalance and dark matter.

Apr 8, 2022

‘Extraordinary’ W boson particle finding contradicts understanding of how universe works

Posted by in category: particle physics

New measurement of fundamental particle of physics after decade-long study challenges theoretical rulebook in scientific ‘mystery’.

Apr 7, 2022

Shock result in particle experiment could spark physics revolution

Posted by in category: particle physics

Scientists find a sub-atomic particle’s mass is at odds with one a theory underpinning modern physics.

Apr 7, 2022

Massive Black Holes Shown to Act Like Quantum Particles

Posted by in categories: cosmology, mathematics, particle physics, quantum physics

Physicists are using quantum math to understand what happens when black holes collide. In a surprise, they’ve shown that a single particle can describe a collision’s entire gravitational wave.

Apr 7, 2022

This Tiny Particle Could Upend What We THINK We Know About the Universe

Posted by in category: particle physics

The W boson, one of the tiniest, most elementary particles in the known universe is causing a big ruckus in the field of particle physics.

New findings about the particle, which is fundamental to the formation of the universe, suggest its mass may be far heavier than predicted by the Standard Model of particle physics —the theoretical “rulebook” that helps us make sense of the building blocks of matter. If true, it could signal a monumental shift in our understanding of the universe.

According to the Standard Model, W bosons (together with another particle, called Z bosons) are responsible for the weak nuclear force, one of the four forces that hold together all observable matter in the universe. The other forces include gravitational force (for which there is currently no explanation in the Standard Model), electromagnetic force, and the strong nuclear force.

Apr 7, 2022

Elementary Particle’s Unexpected Heft Stuns Physicists

Posted by in category: particle physics

In particle physics, data long outlives the detectors that generate it. A decade ago the 4,100-metric-ton Collider Detector at Fermilab (CDF) reached the end of its life and was shut down, stripped of its parts for use in other experiments. Now a fresh analysis of old CDF data has unearthed a stunning discrepancy in the mass of an elementary particle, the W boson, that could point the way to new, as yet undiscovered particles and interactions.

The W boson is massive, some 80 times heavier than a proton. Crucially, the W boson is responsible for certain forms of radioactive decay, allowing neutrons to convert into protons. Because its mass is constrained by (and itself constrains) many other particles and parameters within the Standard Model—particle physicists’ theory of fundamental particles and how they behave—the W boson has become a target for researchers seeking to understand where and how their best theories fail.

Although physicists have long known the W boson’s approximate mass, they still do not know it exactly. Plugging data into the Standard Model framework, however, predicts that the so-called W mass should be 80,357 mega-electron-volts (MeV), plus or minus 6 MeV. (One MeV is about twice the mass-energy contained within a single electron.) But in a new analysis published on Thursday in Science, physicists on the CDF collaboration have instead found the W boson mass to be 80,433.5 ± 9.4 MeV. The new measurement, which is more precise than all previous measurements combined, is nearly 77 MeV higher than the Standard Model’s prediction. Although these numbers differ by only about one part in 1,000, the uncertainties for each are so minuscule that even this small divergence is of enormous statistical significance—it is exceedingly unlikely to be an illusion produced through sheer chance. The well-studied W boson, it seems, still holds plenty of secrets about the workings of the subatomic world—or at least about how we investigate it. Taken by surprise, particle physicists are only beginning to grapple with the implications.