Toggle light / dark theme

Japanese Chemists Have Synthesized Unique Polymers With an Unprecedented Structure

For over 20 years, the Ihara research group at Ehime University has specialized in developing innovative methods for polymer synthesis using diazocarbonyl compounds as monomers.

They discovered that diazoacetate can be polymerized using a palladium (Pd)-based initiator to produce carbon–carbon (C–C) main-chain polymers, with each carbon atom in the backbone bonded to an alkoxycarbonyl (ester) group. Unlike traditional vinyl polymerization—where the polymer backbone is built from two-carbon units of vinyl monomers like ethylene and styrene—diazoacetate polymerization creates the C–C main chain from single-carbon units. This unique process, known as C1 polymerization, is a distinctive and significant feature of this synthesis method.

Nano-Chainmail 2D Mechanically Interlocked Polymer

Nemourlon armor of reasonable weight resists penetration by most fragments and any bullet that is not both reasonably heavy and fairly high-velocity.’ — Jerry Pournelle, 1976.

Goldene — A Two-Dimensional Sheet Of Gold One Atom Thick ‘Hasan always pitched a Gauzy — a one-molecule-layer tent, opaque, feather-light, and very tough.’ — Roger Zelazny, 1966.

GNoME AI From DeepMind Invents Millions Of New Materials ‘…the legendary creativity of our finest human authors pales against the mathematical indefatigability of GNoME.’

Exotic ‘Paraparticles’ That Defy Categorization May Exist in Many Dimensions

Theoretical physicists predict the existence of exotic “paraparticles” that defy classification and could have quantum computing applications.

By Davide Castelvecchi & Nature magazine

Theoretical physicists have proposed the existence of a new type of particle that doesn’t fit into the conventional classifications of fermions and bosons. Their ‘paraparticle’, described in Nature on January 8, is not the first to be suggested, but the detailed mathematical model characterizing it could lead to experiments in which it is created using a quantum computer. The research also suggests that undiscovered elementary paraparticles might exist in nature.

800 hp in a circle box — Dark Matter engine changes the history of EVs

Meet the Dark Matter, the groundbreaking electric motor powering Koenigsegg’s new Gemera hypercar. Officially known as the Dark Matter Raxial Flux 6-phase E-motor, this revolutionary piece of technology debuted at the 2023 Goodwood Festival of Speed. Boasting an impressive 800 horsepower and 922 lb-ft of torque, while weighing just 40kg, the Dark Matter is hailed as the world’s most powerful automotive-grade electric motor. With its unique six-phase technology, it marks a major leap forward in electric vehicle engineering, surpassing the three-phase motors commonly used in most electric vehicles today.

The Dark Matter electric motor is considered the world’s most powerful automotive-grade motor, using a unique six-phase technology. This motor is a significant improvement over the three-phase motors commonly used in most electric vehicles today. The Dark Matter replaces the previous motor used in the Gemera, called the Quark.

Both the Quark and the Dark Matter are “raxial flux” motors, which combine features of two common types of electric motors: radial flux and axial flux. Radial flux motors offer more power but less torque, while axial flux motors are known for providing high torque but with less power. The key difference between these two designs is how the magnetic field travels through the motor. In a radial flux motor, the magnetic field path is longer, creating more power. In an axial flux motor, the magnetic field follows a shorter, more direct path, giving the motor more torque.

Mars’s rare disappearing solar wind event explained

Mars’s atmosphere and climate are impacted by interactions with solar wind, a stream of plasma comprised of protons and electrons that flows from the sun’s outermost atmosphere (corona), traveling at speeds of 400–1,000 kilometers per second.

As these charged particles interact with the planet’s and atmosphere, we may see spectacular auroras over on Earth. Given Mars’s lack of a global magnetic field, auroras here are instead diffused across the planet.

However, sometimes this can “disappear” in when there is a gap in the solar wind path as the sun increases its . This occurs when a faster portion of solar wind overtakes a slower one in a corotating interaction region and incorporates it, leaving a lower-density void in the solar wind path.

Anomalous Hall torque: ‘Brand new physics’ for next-generation spintronics

Our data-driven world demands more—more capacity, more efficiency, more computing power. To meet society’s insatiable need for electronic speed, physicists have been pushing the burgeoning field of spintronics.

Traditional electronics use the charge of electrons to encode, store and transmit information. Spintronic devices utilize both the charge and spin-orientation of electrons. By assigning a value to (up=0 and down=1), spintronic devices offer ultra-fast, energy-efficient platforms.

To develop viable spintronics, physicists must understand the quantum properties within materials. One property, known as spin-torque, is crucial for the electrical manipulation of magnetization that’s required for the next generation of storage and processing technologies.

/* */