Toggle light / dark theme

Fully recyclable carbon nanotube fibers have far-reaching implications for manufacturing across sectors

In a significant step toward creating a sustainable and circular economy, Rice University researchers have published a study in the journal Carbon demonstrating that carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. This discovery positions CNT fibers as a sustainable alternative to traditional materials like metals, polymers and the much larger carbon fibers, which are notoriously difficult to recycle.

“Recycling has long been a challenge in the materials industry—metals recycling is often inefficient and energy-intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” said corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry.

“As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future so as to proactively avoid waste management problems that emerged as other engineered materials reached large-scale use. We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

Targeted intra-tumoral hyperthermia using uniquely biocompatible gold nanorods induces strong immunogenic cell death in two immunogenically ‘cold’ tumor models

Introduction: Hyperthermia is an established adjunct in multimodal cancer treatments, with mechanisms including cell death, immune modulation, and vascular changes. Traditional hyperthermia applications are resource-intensive and often associated with patient morbidity, limiting their clinical accessibility. Gold nanorods (GNRs) offer a precise, minimally invasive alternative by leveraging near-infrared (NIR) light to deliver targeted hyperthermia therapy (THT). THT induces controlled tumor heating, promoting immunogenic cell death (ICD) and modulating the tumor microenvironment (TME) to enhance immune engagement. This study explores the synergistic potential of GNR-mediated THT with immunotherapies in immunogenically ‘cold’ tumors to achieve durable anti-tumor immunity.

Methods: GNRs from Sona Nanotech Inc.™ were intratumorally injected and activated using NIR light to induce mild hyperthermia (42–48°C) for 5 minutes. Tumor responses were analyzed for cell death pathways and immune modulation. The immunogenic effects of THT were assessed alone and in combination with intratumoral interleukin-2 (i.t. IL-2) or systemic PD-1 immune checkpoint blockade. Immune cell infiltration, gene expression changes, and tumor growth kinetics were evaluated.

Results: THT reduced tumor burden through cell death mechanisms, including upregulated ICD marked by calreticulin exposure within 48 hours. By 48 hours, CD45+ immune cell levels were increased, including increased levels of immunosuppressive M2 macrophages. While THT led to innate immune cell stimulations highlighted by gene expression upregulation in the STING cGAS pathway and enhanced M1 and dendritic cell levels, tumor regrowth was observed within six days post-treatment. To enhance THT’s immunogenic effects, the therapy was combined with intratumoral interleukin-2 (i.t. IL-2) or systemic PD-1 immune checkpoint blockade. Sequential administration of i.t. IL-2 post-THT induced robust CD8+ T-cell infiltration and led to sustained tumor regression in both treated and distant tumors, accompanied by the emergence of memory T cells. However, IL-2-induced immunosuppressive T-reg populations were also sustained to tumor endpoint suggesting that therapy could be further enhanced.

Gold Improves the Performance of Nanoparticle Fuel-Cell Reactions

Fuel-cell technology is set to take a step forward as chemists have created a triple-headed metallic nanoparticle, FePtAu, which generates higher current per unit of mass than any other nanoparticle catalyst tested. In tests, researchers from Brown University found that the FePtAu catalyst reached 2809.9 mA/mg Pt and after 13 hours has a mass activity of 2600mA/mg Pt, or 93 percent of its original performance value.

Advances in fuel-cell technology have been stymied by the inadequacy of metals studied as catalysts. The drawback to platinum, other than cost, is that it absorbs carbon monoxide in reactions involving fuel cells powered by organic materials like formic acid.

Any substance that when dissolved in water, gives a pH less than 7.0, or donates a hydrogen ion.

Meet the Ultrathin Conductor Set to Replace Copper in Advanced Electronics

Stanford researchers have uncovered a new material, niobium phosphide, that surpasses copper in electrical conductivity when fashioned into ultrathin films.

This breakthrough could revolutionize the efficiency and performance of future electronics by alleviating the limitations posed by traditional metal wires in nanoscale circuits.

Nanoscale Electronics Challenges

Nanotechnology: The Future of Everything

Nanotechnology is moving from the realm of science fiction to reality, and in the process, these tiny technologies are offering giant opportunities.

Atch my exclusive video The Fermi Paradox: Air https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Credits:
Nanotechnology: The Future of Everything.
Episode 481a; January 12, 2025
Produced, Narrated \& Written: Isaac Arthur.
Select imagery/video supplied by Getty Images.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Stellardrone, \

Combining graphene and nanodiamonds for better microplasma devices

Microplasma devices are incredibly versatile tools for generating and sustaining plasmas on micro-and millimeter scales. The latest advances in nanotechnology now promise to expand their range of applications even further but, so far, this progress has been held back by the limited stability of some nanostructures at the extreme temperatures required to sustain many plasmas.

In a recent study published in Fundamental Plasma Physics, K J Sankaran and colleagues at the CSIR Institute of Minerals and Materials Technology, Bhubaneswar, India, overcome this challenge by decorating sheets of graphene with more stable nanodiamonds—that is, diamonds with diameters smaller than about 100 nm—allowing them to endure far more .

This combined material could expand the use of microplasma devices across a diverse array of useful applications, such as sterilizing and healing wounds, analyzing chemicals, and displaying images.

A Minecraft-based benchmark to train and test multi-modal multi-agent systems

Multiterminal Josephson junctions, nanoscale devices with unique electronic properties, comprise non-superconducting metallic material coupled to three or more superconducting leads. These devices have proved to be promising platforms for the exploration of topological phenomena in condensed matter physics.

Researchers at Northwestern University and Aalto University recently proposed a new approach to studying the topological signatures of multiterminal Josephson junctions, which relies on the collection of resistance measurements.

Using their approach, outlined in a paper published in Physical Review Letters, they were able to observe these signatures, while also unveiling resistance patterns that are far richer than those predicted by physics theories.

How Scientists Are Using Atomic Precision to Supercharge Chemistry

Bimetallic particles, made from a combination of a noble metal and a base metal, have unique catalytic properties that make them highly effective for selective heterogeneous hydrogenation reactions. These properties arise from their distinctive geometric and electronic structures. For hydrogenation to be both effective and selective, it requires specific interactions at the molecular level, where the active atoms on the catalyst precisely target the functional group in the substrate for transformation.

Nanoscale Engineering and Electronic Structure Tuning

Scaling these particles down to nanoscale atomic clusters or single-atom alloys further enhances their catalytic performance. This reduction in size increases surface dispersion and optimizes the use of noble metal atoms. Additionally, these nanoscale changes alter the electronic structure of the active sites, which can significantly influence the activity and selectivity of the reaction. By carefully adjusting the bonding between noble metal single atoms and the base metal host, researchers can create flexible environments that fine-tune the electronic properties needed to activate specific functional groups. Despite these advances, achieving atomically precise fabrication of such active sites remains a significant challenge.

Decoding 2D material growth: White graphene insights open doors to cleaner energy and more efficient electronics

A breakthrough in decoding the growth process of hexagonal boron nitride (hBN), a 2D material, and its nanostructures on metal substrates could pave the way for more efficient electronics, cleaner energy solutions and greener chemical manufacturing, according to new research from the University of Surrey published in the journal Small.

Only one atom thick, hBN—often nicknamed “white graphene”—is an ultra-thin, super-resilient material that blocks electrical currents, withstands extreme temperatures and resists chemical damage. Its unique versatility makes it an invaluable component in , where it can protect delicate microchips and enable the development of faster, more efficient transistors.

Going a step further, researchers have also demonstrated the formation of nanoporous hBN, a novel material with structured voids that allows for selective absorption, advanced catalysis and enhanced functionality, vastly expanding its potential environmental applications. This includes sensing and filtering pollutants—as well as enhancing advanced energy systems, including hydrogen storage and electrochemical catalysts for fuel cells.

Superconducting nanostrip single photon detectors fabricated of aluminum thin-films

We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths. The Al films were deposited using magnetron sputtering, and the sophisticated nanostructures and morphology of the deposited films were revealed through high-resolution transmission electron microscopy. The fabricated Al meander nanostrips, with a thickness of 4.2 nm and a width of 178 nm, exhibited a superconducting transition temperature of 2.4 K and a critical current of approximately 5 μA at 0.85 K. While the Al nanostrips demonstrated a saturated internal quantum efficiency for 405-nm photons, the internal detection efficiency exhibited an exponential dependence on bias current without any saturation tendency for 1550-nm photons. This behavior can be attributed to the relatively large diffusion coefficient and coherence length of the Al films.