Toggle light / dark theme

Revolutionary CRISPR Gene Editing with Nanoparticles

Looking back at best of 2017)


Summary: Nanotechnology meets gene editing. MIT researchers use nanoparticles instead of viruses to deliver the CRISPR gene editing system. This article first appeared on LongevityFacts. Author: Brady Hartman]

In a new study, MIT scientists have developed nanoparticles that deliver the CRISPR gene editing system, eliminating the need to use viruses for delivery.

Using the new delivery technique, the gene editors were able to cut out genes in about 80 percent of liver cells, the best success rate ever achieved with CRISPR in adult animals. Speaking about the success of the project, Daniel Anderson, senior author of the study and an associate professor in MIT’s Department of Chemical Engineering, said.

Read more

Nanoparticle gel could make mass-market low-cost Holography, LIDAR

Why aren’t holograms or related optical devices part of our everyday lives yet? The technologies can be created by using magnetic fields to alter the path of light, but the materials that can do that are expensive, brittle and opaque. Some only work in temperatures as cold as the vacuum of space.

Minjeong Cha, MSE PhD Student, applies a gel made up of chiromagnetic nanoparticles that are a conduit for modulating light to a laser apparatus. Image credit: Joseph Xu, Michigan Engineering

Now, researchers from the University of Michigan and the Federal University of Sao Carlos in Brazil have demonstrated that inexpensive nanoparticles in a gel can replace traditional materials at a drastically reduced cost. And their approach works at room temperature.

Read more

Could science destroy the world? These scholars want to save us from a modern-day Frankenstein

The dozen people working at CSER itself—little more than a large room in an out-of-the-way building near the university’s occupational health service—organize talks, convene scientists to discuss future developments, and publish on topics from regulation of synthetic biology to ecological tipping points. A lot of their time is spent pondering end-of-the-world scenarios and potential safeguards.


A small cadre of scientists worries that lab-made viruses, AI, or nanobots could drive humans to extinction.

Read more

First Human FROZEN

Dennis Kowalski, the president of Cryonics Institute in the United States, has made the incredible announcement that cryonics is advancing so fast that he is unable to keep up with the demand for it. The institute spearheads the process of freezing human beings by cryogenics.

Dennis spoke exclusively and said that technology is making huge advances and went on to talk about CPR and said that it would have seemed not possible only 100 years ago. He said that today people take technology for granted. Dennis used to work as a paramedic and said that the reason he got into cryogenics was thanks to a book with the title of Engines of Creation by J Robert Freitas which has the focus on nanotechnology.

Read more

How bacteria turbocharged their motors

Using detailed 3D images, researchers have shown how bacteria have evolved molecular motors of different powers to optimize their swimming.

The discovery, by a team from Imperial College London, provides insights into evolution at the molecular scale.

Bacteria use molecular motors just tens of nanometres wide to spin a tail (or ‘flagellum’) that pushes them through their habitat. Like human-made motors, the structure of these nanoscale machines determines their power and the bacteria’s swimming ability.

Read more

Nanoscale cryptography method gains robustness from stiction

Most of the cryptographic methods that keep important data secure use complex encryption software, and as a result, consume large amounts of power. As more and more electronic devices are being connected to the internet, there is a growing need for alternative low-power security methods, and this is often done by basing the security on hardware rather than software.

One of the most promising approaches to hardware-based, low-power security is to derive cryptographic keys from the randomness that inherently and uncontrollably emerges during the of nanoscale devices. These methods, called “physical unclonable functions” (PUFs), convert the random variations in the physical devices into the binary states of “0” and “1” to create unique, random cryptographic keys. These keys can then be used to encrypt data into cipher text, as well as decrypt it back into plain text, in a process that remains secure as long as the key remains private.

However, one of the biggest challenges facing PUF technology is its vulnerability to harsh environments. Since the physical randomness that forms the basis of the key usually arises from variations in electrical characteristics, and electrical characteristics are affected by external factors such as high temperatures and radiation, these devices often do not preserve their states when exposed to such conditions.

Read more

A Revolutionary New Type of Lens Focuses All The Colours of The Rainbow Into a Single Point

A brand new type of lens called a metalens has just passed a major hurdle. A metalens is a flat surface that use nanostructures to focus light, and it could change optics forever by replacing the traditional bulky, curved lenses we know.

Up until now these ultra-compact lenses have had enormous potential, but they’ve struggled to focus a broad spectrum of light. Well, that just changed.

For the first time researchers have managed to develop a single metalens capable of focusing all the colours of the rainbow – the entire visible spectrum of light, making white light – into one point at a high resolution, something that has required multiple lenses in the past.

Read more

MIT Just Created Living Plants That Glow Like A Lamp, And Could Grow Glowing Trees To Replace Streetlights

Roads of the future could be lit by glowing trees instead of streetlamps, thanks to a breakthrough in creating bioluminescent plants. Experts injected specialized nanoparticles into the leaves of a watercress plant, which caused it to give off a dim light for nearly four hours. This could solve lots of problems.

The chemical involved, which produced enough light to read a book by, is the same as is used by fireflies to create their characteristic shine. To create their glowing plants, engineers from the Massachusetts Institute of Technology (MIT) turned to an enzyme called luciferase. Luciferase acts on a molecule called luciferin, causing it to emit light.

Read more