Toggle light / dark theme

A brand new type of lens called a metalens has just passed a major hurdle. A metalens is a flat surface that use nanostructures to focus light, and it could change optics forever by replacing the traditional bulky, curved lenses we know.

Up until now these ultra-compact lenses have had enormous potential, but they’ve struggled to focus a broad spectrum of light. Well, that just changed.

For the first time researchers have managed to develop a single metalens capable of focusing all the colours of the rainbow – the entire visible spectrum of light, making white light – into one point at a high resolution, something that has required multiple lenses in the past.

Read more

Roads of the future could be lit by glowing trees instead of streetlamps, thanks to a breakthrough in creating bioluminescent plants. Experts injected specialized nanoparticles into the leaves of a watercress plant, which caused it to give off a dim light for nearly four hours. This could solve lots of problems.

The chemical involved, which produced enough light to read a book by, is the same as is used by fireflies to create their characteristic shine. To create their glowing plants, engineers from the Massachusetts Institute of Technology (MIT) turned to an enzyme called luciferase. Luciferase acts on a molecule called luciferin, causing it to emit light.

Read more

Biotech is one of today’s many hot frontiers of technology, but one thing holding it back is that it’s significantly less amenable to traditional computing techniques than other areas. A new startup called Asimov, spun off from research at MIT, is working on bridging the gap between the digital and the biological by creating, essentially, a set of computer-aided biology design tools. It’s a prescient enough idea that it has attracted $4.7 million in seed funding.

The problem that Asimov addresses is this. Say you’re a pharmaceutical company trying to make a tiny biocompatible machine that holds a certain amount of medication and releases it when it senses some other molecule.

In order to do so, you’d have to — well, among about a million other things — design what amounts to a logic gate and signal processor that works at the molecular scale. This is a daunting prospect, as creating molecular machinery is a labor-intensive process often involving creating thousands of variations of a given structure and testing them repeatedly to see which works.

Read more

Although solar panels might appear bright and shiny, in desert environments, where they are most frequently installed, layers of dust and other particles can quickly coat their surface. These coatings can affect the panels’ ability to absorb sunlight and drastically reduce the conversion of the sun’s rays into energy, making it necessary to periodically wash the panels with water. But often, in areas like Nevada, water resources are scarce.

Consequently, NEXUS scientists have turned their attention toward developing technologies for waterless cleaning. NASA has already been using such techniques to wash panels in the lunar and Mars missions, but their developed methodologies prove too expensive for widespread public application. NEXUS scientist Biswajit Das of UNLV and his team are aiming to develop a water-free cleaning technology that will be cost-effective for large-scale photovoltaic generation, whereby they look to nanotechnology, rather than water, to clean the panels. “Our mission is to develop a waterless, or at least a less-water cleaning technique to address the effect of dust on solar panels,” Das says. “Once developed, this method will significantly reduce water use for the future PV generation.”

Read more

Some of the earliest computers relied upon tape drives for storage, but we’ve since moved on to faster and more versatile storage technologies. Still, tape drives continue to exist in enterprise, and they’ve been advancing by leaps and bounds while you haven’t been paying attention. IBM just announced a new record in data storage density — 201 gigabits per square inch on a magnetic tape (that’s one square inch of it above). That works out to a whopping 330TB of uncompressed data on a single tape drive cartridge.

IBM reached this plateau in magnetic tape density by developing several new technologies. Older versions of IBM’s magnetic tape used a thin film of barium ferrite particles applied to the surface like paint. “Sputtered tape” uses several layers of thin metal film that are applied using a new vacuum technology. A layer of lubricant is also applied to the reading surface of the tape to keep the tape in good working order as it’s run through the drive. The higher density arrangement of magnetic nanoparticles will, of course, require new drive technology to read.

Read more

Imagine that instead of switching on a lamp when it gets dark, you could read by the light of a glowing plant on your desk.

MIT engineers have taken a critical first step toward making that vision a reality. By embedding specialized nanoparticles into the leaves of a watercress plant, they induced the plants to give off dim for nearly four hours. They believe that, with further optimization, such plants will one day be bright enough to illuminate a workspace.

“The vision is to make a plant that will function as a desk lamp—a lamp that you don’t have to plug in. The light is ultimately powered by the energy metabolism of the plant itself,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study.

Read more

Yet CRISPR has a dirty secret: there’s really no perfect way to deliver the “molecular scissors” safely into cells. Most methods currently rely on viruses: the DNA that encodes the CRISPR machinery is spliced into a “viral vector” then injected into the troubled tissue.

That’s all well and good for diseases that affect blood and muscle. But for destinations buried deep within the body, delivery becomes a serious issue.

Yin’s workaround wasn’t ideal: he shot two milliliters of solution containing the CRISPR machinery into the mice’s veins using incredibly high pressure. The human equivalent? Your entire blood volume, injected in just five minutes.

Read more