Toggle light / dark theme

A filament fit for space—silk is proven to thrive in outer space temperatures

Their initial discovery had seemed like a contradiction because most other polymer fibres embrittle in the cold. But after many years of working on the problem, the group of researchers have discovered that silk’s cryogenic toughness is based on its nano-scale fibrills. Sub-microscopic order and hierarchy allows a silk to withstand temperatures of down to −200 C. And possibly even lower, which would make these classic natural luxury fibres ideal for applications in the depths of chilly outer-space.

The interdisciplinary team examined the behaviour and function of several animal silks cooled down to liquid nitrogen temperature of −196 C. The fibres included spider silks but the study focused on the thicker and much more commercial fibres of the wild silkworm Antheraea pernyi.

In an article published today in Materials Chemistry Frontiers, the team was able to show not only ‘that’ but also ‘how’ silk increases its toughness under conditions where most materials would become very brittle. Indeed, silk seems to contradict the fundamental understanding of polymer science by not losing but gaining quality under really cold conditions by becoming both stronger and more stretchable. This study examines the ‘how’ and explains the ‘why’. It turns out that the underlying processes rely on the many nano-sized fibrils that make up the core of a silk fibre.

DNA Nanomachines Are Opening Medicine to the World of Physics

When I imagine the inner workings of a robot, I think hard, cold mechanics running on physics: shafts, wheels, gears. Human bodies, in contrast, are more of a contained molecular soup operating on the principles of biochemistry.

Yet similar to robots, our cells are also attuned to mechanical forces—just at a much smaller scale. Tiny pushes and pulls, for example, can urge stem cells to continue dividing, or nudge them into maturity to replace broken tissues. Chemistry isn’t king when it comes to governing our bodies; physical forces are similarly powerful. The problem is how to tap into them.

In a new perspectives article in Science, Dr. Khalid Salaita and graduate student Aaron Blanchard from Emory University in Atlanta point to DNA as the solution. The team painted a futuristic picture of DNA mechanotechnology, in which we use DNA machines to control our biology. Rather than a toxic chemotherapy drip, for example, a cancer patient may one day be injected with DNA nanodevices that help their immune cells better grab onto—and snuff out—cancerous ones.

SwarmTouch: A tactile interaction strategy for human-swarm communication

Researchers at the Skolkovo Institute of Science and Technology (Skoltech) in Russia have recently introduced a new strategy to enhance interactions between humans and robotic swarms, called SwarmTouch. This strategy, presented in a paper pre-published on arXiv, allows a human operator to communicate with a swarm of nano-quadrotor drones and guide their formation, while receiving tactile feedback in the form of vibrations.

“We are working in the field of swarm of drones and my previous research in the field of haptics was very helpful in introducing a new frontier of tactile human-swarm interactions,” Dzmitry Tsetserukou, Professor at Skoltech and head of Intelligent Space Robotics laboratory, told TechXplore. “During our experiments with the swarm, however, we understood that current interfaces are too unfriendly and difficult to operate.”

While conducting research investigating strategies for human-swarm interaction, Tsetserukou and his colleagues realised that there are currently no available interfaces that allow human operators to easily deploy a swarm of robots and control its movements in real time. At the moment, most swarms simply follow predefined trajectories, which have been set out by researchers before the robots start operating.

A new way to turn heat into energy

An international team of scientists has figured out how to capture heat and turn it into electricity.

The discovery, published last week in the journal Science Advances, could create more efficient generation from heat in things like car exhaust, interplanetary space probes and .

“Because of this discovery, we should be able to make more out of heat than we do today,” said study co-author Joseph Heremans, professor of mechanical and aerospace engineering and Ohio Eminent Scholar in Nanotechnology at The Ohio State University. “It’s something that, until now, nobody thought was possible.”

Novel anti-cancer nanomedicine for efficient chemotherapy

Researchers at the University of Helsinki in collaboration with researchers from Åbo Akademi University (Finland) and Huazhong University of Science and Technology (China) have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy. This new nano-tool provides a new approach to use cell-based nanomedicines for efficient cancer chemotherapy.

Honey I shrunk the kids! Real life ‘shrink ray’ reduces 3D structures to 1/1000th their original size

SCIENTISTS have created a “shrink ray” that can reduce objects to one-thousandth of their original size.

The mind-blowing gizmo could one day be used to create nano-robots that are smaller that we can physically produce today.

This brings us a step closer to making 1989 sci-fi comedy Honey, I Shrunk the Kids a reality.

Researchers build a quantum dot energy harvester

Over the past few years, thermoelectric generators have become the focus of a growing number of studies, due to their ability to convert waste heat into electrical energy. Quantum dots, semiconductor crystals with distinctive conductive properties, could be good candidates for thermoelectric generation, as their discrete resonant levels provide excellent energy filters.

In a recent study, researchers at the University of Cambridge, in collaboration with colleagues in Madrid, Rochester, Duisburg and Sheffield, have experimentally demonstrated the potential of an autonomous nanoscale harvester based on resonant tunneling quantum dots. This harvester is based on previous research carried out by part of their team, who had proposed a three-terminal energy harvester based on two resonant-tunneling quantum dots with different energy levels.

The energy harvester device was realized at Cavendish Laboratory in Cambridge by a researcher called Gulzat Jaliel. The original theoretical proposal for the device, however, was introduced by Andrew Jordan in 2013, and the theoretical work behind the harvester was carried out by him in collaboration with renowned semiconductor physicist Markus Büttiker and a team of post-doctoral students in Geneva.

The design, construction and characterization of new nanovibrational bioreactors for osteogenesis

In regenerative medicine, scientists aim to significantly advance techniques that can control stem cell lineage commitment. For example, mechanical stimulation of mesenchymal stem cells (MSCs) at the nanoscale can activate mechanotransduction pathways to stimulate osteogenesis (bone development) in 2-D and 3D culture. Such work can revolutionize bone graft procedures by creating graft material from autologous or allogenic sources of MSCs without chemically inducing the phenomenon. Due to increasing biomedical interest in such mechanical stimulation of cells for clinical use, both researchers and clinicians require a scalable bioreactor system to provide consistently reproducible results. In a new study now published on Scientific Reports, Paul Campsie and a team of multidisciplinary researchers at the departments of biomedical engineering, computing, physics, and molecular, cell and systems biology engineered a new bioreactor system to meet the existing requirements.

The new instrument contained a vibration plate for bioreactions, calibrated and optimized for nanometer vibrations at 1 kHz, a power supply unit to generate a 30 nm vibration amplitude and custom six-well cultureware for cell growth. The cultureware contained magnetic inserts to attach to the bioreactor’s magnetic vibration plate. They assessed osteogenic protein expression to confirm the differentiation of MSCs after initial biological experiments within the system. Campsie et al. conducted atomic force microscopy (AFM) of the 3D gel constructs to verify that strain hardening of the gel did not occur during vibrational stimulation. The results confirmed to be the result of nano-vibrational stimulations provided by the bioreactor alone.

The increasing incidence of skeletal injuries due to age-related conditions such as osteoporosis and osteoarthritis is a metric of the depleting quality of human life. The development of treatments for increased bone density or fracture healing are prime targets for the regenerative potential of mesenchymal stem (MSCs). Researchers have demonstrated controlled osteogenesis (development of bones) of MSCs via mechanical stimulation using several methods, including passive and active strategies. Passive methods typically alter the substrate topography to influence the cell adhesion profile, while active methods include exposure to varied forces from external sources.