Toggle light / dark theme

An international team of cancer researchers has developed a new type of copper-based nanoparticle that can kill tumor cells in mice. While the technology showed effectiveness on its own, by combining it with immunotherapy the scientists say it produced long-lasting effects, quickly killing off any cancer cells that dared to return.

The therapy centers on new knowledge around tumors’ aversion to certain types of nanoparticles. The research team made up of scientists from KU Leuven, the University of Bremen, the Leibniz Institute of Materials Engineering, and the University of Ioannina, discovered that tumor cells were particularly sensitive to nanoparticles made from copper and oxygen.

Once these copper oxide nanoparticles enter a living organism they dissolve and become toxic, killing off cancer cells that happen to be in the area. Key to the new nanoparticle design was the addition of iron oxide, which the researchers say enables it to kill off cancer cells while leaving healthy cells intact.

Johns Hopkins researchers report that a type of biodegradable, lab-engineered nanoparticle they fashioned can successfully deliver a “suicide gene” to pediatric brain tumor cells implanted in the brains of mice. The poly(beta-amino ester) nanoparticles, known as PBAEs, were part of a treatment that also used a drug to kill the cells and prolong the test animals’ survival.

In their study, described in a report published January 2020 in the journal Nanomedicine: Nanotechnology, Biology and Medicine, the researchers caution that for safety and biological reasons, it is unlikely that the herpes simplex virus type I thymidine kinase (HSVtk)—which makes tumor cells more sensitive to the lethal effects of the anti-viral drug ganciclovir—could be the exact therapy used to treat human medulloblastoma and atypical teratoid/rhabdoid tumors (AT/RT) in children.

So-called “suicide ” have been studied and used in cancer treatments for more than 25 years. The HSVtk gene makes an enzyme that helps restore the function of natural tumor suppression.

Optically levitated nanosphere shows definitive signature of its quantum ground state of motion.

Picture a marble rolling around inside a bowl. The motion of the marble represents its center-of-mass temperature, a quantity distinct from the object’s physical temperature. Now replace the marble with a levitated nanosphere and the bowl with an optical trap, and you have the experiment used by Felix Tebbenjohanns and colleagues at the Swiss Federal Institute of Technology (ETH), Zurich, to reduce a levitated nanoparticle’s center-of-mass temperature to close to its quantum ground state. The experimental signature showing that the nanosphere had entered the quantum regime had, until now, been seen only in mechanically clamped systems coupled to optical cavities.

This technology may one day be used to revive patient suspended in cryonics.


A new way to warm up frozen tissue using tiny vibrating particles could one day help with the problem of organ shortages.

We know how to cool organs to cryogenic temperatures, which is usually below 320 degrees Fahrenheit. But the organs can’t be stored for long — sometimes only four hours for heart and lungs — because they get damaged when you try to warm them up. As a result, more than 60 percent of donor hearts and lungs aren’t transplanted. In a study published today in Science Translational Medicine, scientists used nanoparticles to warm up frozen tissue quickly and without damaging the organs. Within a decade, this could lead to being able to store entire organs in organ banks for a long period of time, the authors say.

For today’s study, the team rewarmed 50 milliliters of tissue and solution with magnetic nanoparticles. Magnetic particles create heat in electromagnetic fields, says study co-author Zhe Gao, an post-doc studying nanotechnology at the University of Minnesota. Basically, the scientists infused a tissue with a special kind of nanoparticle made of silica-coated iron oxide. Then, they expose it to a magnetic field. Think of the nanoparticles as antennae. Once they get pick up the “signal” from the magnetic fields, they start to vibrate, and this creates the heat that warms up the organ quickly.

We often hear this word used in Transhumanist (H+) discussions, but what is meant by it? After all, if H+ is about using scitech to enhance Human capabilities via internal modifications what does it mean to go beyond these? In the following I intend to delineate possible stages of enhancement from what exists today to what could exist as an endpoint of this process in centuries to come.

Although I have tried to put it in what I believe to be a plausible chronological order a great deal depends on major unknowns, most especially the rapidity with which Artificial Intelligence (AI) develops over the next few decades. Although AI and biotech are at present evolving separately and in parallel I would expect at some point fairly soon for there to be a massive crossover. Exactly how or when that might happen is again a moot question. There is also a somewhat artificial distinction between machines and biology, which exists because our current machines are so primitive. Once we have a fully functioning nanotechnology, just like Nature’s existing nanotech (life), that distinction will disappear completely.

Researchers at Columbia University and University of California, San Diego, have introduced a novel “multi-messenger” approach to quantum physics that signifies a technological leap in how scientists can explore quantum materials.

The findings appear in a recent article published in Nature Materials, led by A. S. McLeod, postdoctoral researcher, Columbia Nano Initiative, with co-authors Dmitri Basov and A. J. Millis at Columbia and R.A. Averitt at UC San Diego.

“We have brought a technique from the inter-galactic scale down to the realm of the ultra-small,” said Basov, Higgins Professor of Physics and Director of the Energy Frontier Research Center at Columbia. Equipped with multi-modal nanoscience tools we can now routinely go places no one thought would be possible as recently as five years ago.”

The accelerator-on-a-chip demonstrated in Science is just a prototype, but Vuckovic said its design and fabrication techniques can be scaled up to deliver particle beams accelerated enough to perform cutting-edge experiments in chemistry, materials science and biological discovery that don’t require the power of a massive accelerator.

“The largest accelerators are like powerful telescopes. There are only a few in the world and scientists must come to places like SLAC to use them,” Vuckovic said. “We want to miniaturize accelerator technology in a way that makes it a more accessible research tool.”

Team members liken their approach to the way that computing evolved from the mainframe to the smaller but still useful PC. Accelerator-on-a-chip technology could also lead to new cancer radiation therapies, said physicist Robert Byer, a co-author of the Science paper. Again, it’s a matter of size.

Today, medical X-ray machines fill a room and deliver a beam of radiation that’s tough to focus on tumors, requiring patients to wear lead shields to minimize collateral damage.


Nuclear fusion, the process that powers our sun, happens when nuclear reactions between light elements produce heavier ones. It’s also happening — at a smaller scale — in a Colorado State University laboratory.

Using a compact but powerful laser to heat arrays of ordered nanowires, CSU scientists and collaborators have demonstrated micro-scale nuclear fusion in the lab. They have achieved record-setting efficiency for the generation of neutrons — chargeless sub-atomic particles resulting from the fusion process.

Their work is detailed in a paper published in Nature Communications (“Micro-scale fusion in dense relativistic nanowire array plasmas”), and is led by Jorge Rocca, University Distinguished Professor in electrical and computer engineering and physics. The paper’s first author is Alden Curtis, a CSU graduate student.

A group of scientists from the Russian Academy of Sciences (ICG SB RAS) and the TSU Biological Institute has established a path through which nanoparticles of viruses and organic and inorganic substances from the environment enter the brain. Additionally, the researchers report a simple and inexpensive way to block their entry. The data obtained by the project could play a large role in medicine and pharmaceuticals, where nanoparticles are increasingly used for the diagnosis and treatment of serious diseases.

“There are a large number of nanoparticles of a wide variety of chemical elements and their compounds in the environment, ranging from harmless to toxic, for example, heavy metal oxides,” says Mikhail Moshkin, director of the Center for Laboratory Animal Genetic Resources of the ICG SB RAS. “Scientists have accumulated data that indicate the adverse effect of nanoparticles, for example, people who live closer than 50 meters to large highways may develop neurodegenerative diseases (Alzheimer’s, Parkinson’s and others) due to the accumulation of nanosized particles in the brain.”

The researchers sought to determine how nanoparticles enter the brain. They cannot penetrate through the lungs and blood vessels because the blood-brain barrier blocks them from the brain. Experiments conducted on rodents helped calculate the trajectory of the movement of nanoparticles.