Engineers have discovered a way to more than double the lifespan of batteries used in smartphones and electric cars.
The battery breakthrough was successfully demonstrated by researchers at the University of Queensland in Australia, who increased the lifespan of a lithium-ion (li-ion) battery from several hundred charge/ discharge cycles, to more than 1,000.
“Our process will increase the lifespan of batteries in many things, from smartphones and laptops, to power tools and electric vehicles,” said Professor Lianzhou Wang from the Australian Institute for Bioengineering and Nanotechnology.
New research artificially creating a rare form of matter known as spin glass could spark a new paradigm in artificial intelligence by allowing algorithms to be directly printed as physical hardware. The unusual properties of spin glass enable a form of AI that can recognize objects from partial images much like the brain does and show promise for low-power computing, among other intriguing capabilities.
“Our work accomplished the first experimental realization of an artificial spin glass consisting of nanomagnets arranged to replicate a neural network,” said Michael Saccone, a post-doctoral researcher in theoretical physics at Los Alamos National Laboratory and lead author of the new paper in Nature Physics. “Our paper lays the groundwork we need to use these physical systems practically.”
Spin glasses are a way to think about material structure mathematically. Being free, for the first time, to tweak the interaction within these systems using electron-beam lithography makes it possible to represent a variety of computing problems in spin-glass networks, Saccone said.
Immortalists Magazine is an experimental project by multi-media, conceptual artist, Dinorah Delfin.
Inspinspired by Trans-, Post-, and Meta-Humanist philosophy & innovations. The aim is to bring greater awareness to Transhumanism & the science of Radical Life Extension. Immortalists Magazine reflects the personal opinions of the artist.
Mind-body philosophy | solving the hard problem of consciousness.
Recent advances in science and technology have allowed us to reveal — and in some cases even alter — the innermost workings of the human body. With electron microscopes, we can see our DNA, the source code of life itself. With nanobots, we can send cameras throughout our bodies and deliver drugs directly into the areas where they are most needed. We are even using artificially intelligent robots to perform surgeries on ourselves with unprecedented precision and accuracy.
Materialism says that the cosmos, and all that is contains, is an objective physical reality. As a result, philosophers who subscribe to this school of thought assert that consciousness, and all that it entails, arises from material interactions. As such, the material world (our flesh, neurons, synapse, etc.) is what creates consciousness.
Idealism says that the universe is entirely subjective and that reality is something that is mentally constructed. In other words, consciousness is something that is immaterial and cannot be observed or measured empirically. Since consciousness is what creates the material world, according to this school of thought, it is unclear if we can ever truly know anything that is mind-independent and beyond our subjective experience.
Dualism essentially holds that mental phenomena are, in some respects, non-physical in nature. In this respect, the mind and the body exist, but they are distinct and separable.
Although most modern philosophers subscribe to the materialist view, determining, and ultimately understanding, the nature of human consciousness using an empirical methodology is a remarkably difficult task. The primary issue with accomplishing the aforementioned is that empirical science requires things to be measured objectively. And when it comes to consciousness, everything is subjective.
A gas made of particles of light, or photons, becomes easier to compress the more you squash it. This strange property could prove useful in making highly sensitive sensors.
While gases are normally made from atoms or molecules, it is possible to create a gas of photons by trapping them with lasers. But a gas made this way doesn’t have a uniform density – researchers say it isn’t homogeneous, or pure – making it difficult to study properly.
Now Julian Schmitt at the University of Bonn, Germany, and his colleagues have made a homogeneous photon gas for the first time by trapping photons between two nanoscale mirrors.
Scientists from the NTU Singapore and the Korea Institute of Machinery & Materials (KIMM) have developed a technique to create a highly uniform and scalable semiconductor wafer, paving the way to higher chip yield and more cost-efficient semiconductors.
Left: Image of a six-inch silicon wafer with printed metal layers and its top-view scanning electron microscope image. Right: Image of the six-inch silicon wafer with nanowires and its cross-sectional scanning electron microscope image. (Image: NTU Singpore)
Semiconductor chips commonly found in smart phones and computers are difficult and complex to make, requiring highly advanced machines and special environments to manufacture.
The microscopic components that make up computer chips must be made at staggering scales. With billions of transistors in a single processor, each made of multiple materials carefully arranged in patterns as thin as a strand of DNA, their manufacturing tools must also operate at a molecular level.
Typically, these tools involve using stencils to selectively pattern or remove materials with high fidelity, layer after layer, to form nanoscale electronic devices. But as chips must fit more and more components to keep up with the digital world’s growing computational demands, these nanopatterning stencils must also become smaller and more precise.
Now, a team of Penn Engineers has demonstrated how a new class of polymers could do just that. In a new study, the researchers demonstrated how “multiblock” copolymers can produce exceptionally ordered patterns in thin films, achieving spacings smaller than three nanometers.
This doesn’t look like your trusty potato battery: a prototype device made by scientists at the University of Maryland uses wood fibers coated with carbon nanotubes to create an electric current.
Get a year of Nebula and Curiosity Stream for only $14.79 when you sign up at http://www.curiositystream.com/joescott. We’ve been hearing for years how nanotechnology is going to change the world. In movies and in headlines, nanotechnology is almost like “future magic” that will make the impossible possible. But how realistic are those predictions? And how close are we to seeing some of them come true? Let’s take a look at the state of nanotechnology.