Circa 2014
Physicists developed a smartphone app that can record and analyze particles from cosmic ray muons.
For years, researchers have aimed to learn more about a group of metal oxides that show promise as key materials for the next generation of lithium-ion batteries because of their mysterious ability to store significantly more energy than should be possible. An international research team, co-led by The University of Texas at Austin, has cracked the code of this scientific anomaly, knocking down a barrier to building ultra-fast battery energy storage systems.
The team found that these metal oxides possess unique ways to store energy beyond classic electrochemical storage mechanisms. The research, published in Nature Materials, found several types of metal compounds with up to three times the energy storage capability compared with materials common in today’s commercially available lithium-ion batteries.
By decoding this mystery, the researchers are helping unlock batteries with greater energy capacity. That could mean smaller, more powerful batteries able to rapidly deliver charges for everything from smartphones to electric vehicles.
Qualcomm Technologies announced Monday that it conducted the first successful extended range 5G data call over mmWave.
Range has been a key obstacle for cellphone carriers as they move to mmWave technology to take advantage of faster 5G speeds. Qualcomm’s breakthrough could speed up deployment of 5G smartphones.
Qualcomm reported that it conducted a 5G call over a 2.36 mile distance, double the distance that it had projected when it unveiled its new antenna system last year. Qualcomm worked with Casa Systems, an ultra-broadband provider, and Ericsson, the multinational telecommunications company, on the project.
Dye-sensitized solar cells used in low-light conditions could perform more consistently thanks to improved understanding of the role additives play in optimizing electrolytes.
Laptops and mobile phones, among other devices, could be charged or powered indoors, away from direct sunlight, using dye-sensitized solar cells (DSCs), which have achieved efficiencies of up to 34% at 1000 lux from a fluorescent lamp.
Copper-based electrolytes containing various combinations of additives have been used to achieve these efficiencies, with varying results to date.
A space engineer made a working rotary cell phone.
Keyed locks are relatively easy to pick if you’ve spent enough time mastering the skill. But researchers at the National University of Singapore have just made it even easier. If you can use a smartphone to record a sound, you can capture all the information you need to create a working duplicate of a key.
The newfound vulnerability – although it’s more a case of modern technology compromising an outdated technology – was discovered by cyberphysical systems researcher Soundarya Ramesh and a team at the National University of Singapore. The attack, called SpiKey, works on what are known as pin tumbler locks that are opened using a key with a unique ridge pattern on its edge. As the key slides into the lock, the ridges push six metal spring-backed pins to different heights which, when all are properly aligned, allow a tumbler to turn and a lock to be opened. They’re one of the most common types of locks out there, used in everything from doors to padlocks, which makes this attack especially concerning.
To open a pin tumbler lock without the key, a locksmith (or lock pick) uses a specialised set of tools to manually adjust the height of each pin, one by one, until they figure out the unique arrangement needed for the tumbler to turn. The SpiKey technique is magnitudes easier, and requires little to no special skills, aside from the ins and outs of operating a 3D printer.
While Photoshop can do a pretty good job at removing shadows from faces, there’s a fair amount of legwork involved. One scientist has shown that neural networks and artificial intelligence can produce some very impressive results, suggesting that it will soon be a part of how we edit our photos.
Károly Zsolnai-Fehér of Two Minute Papers and the Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria, just released a video demonstrating how he has taught a neural network using large data sets to recognize and eliminate shadows from a face in a photograph. As detailed in the video, the neural network was taught by giving it photographs of faces to which shadows had been added artificially.
Given its effectiveness and the quality of the results, it seems only a matter of time before smartphones give you the option to remove shadows. In theory, you might even be able to switch on shadow removal while taking the photograph.
A trio of researchers has found a way to pick an ordinary physical lock using a smartphone with special software. The three, Soundarya Ramesh, Harini Ramprasad, and Jun Han, gave a talk at a workshop called HotMobile 2020 at this year’s International Workshop on Mobile Computing Systems and Applications, outlining their work.
With traditional locks, such as those found on the front doors of most homes, a person inserts the proper (metal) key and then turns it. Doing so pushes up a series of pins in the lock by a certain amount based on the ridges on the key. When the pins are pushed in a way that matches a preset condition, the tumbler can turn, retracting the metal piece of the door assembly from its berth, allowing the door to open. In this new effort, the researchers have found that it is possible to record the sounds made as the key comes into contact with the pins and then as the pins move upward, and use software to recreate the conditions that produce the same noises. Those conditions can be used to fabricate a metal key to unlock the door. The result is a system the team calls SpiKey, which involves use of a smartphone to record lock clicks, decipher them and then create a key signature for use in creating a new metal key.
The researchers acknowledged in their presentation that the weak link in their system is recording the key unlocking the door. Because of its nature, they assume that the recording would have to be done secretly so as to not alert a homeowner that their lock is being picked. They suggest that several possible options for wrongdoers, including walking past while holding a microphone, hiding a microphone nearby, or installing software on the victim’s phone. Each has its own risks, they note, which would minimize the likelihood of run-of-the-mill burglars using such an approach. But for high-profile victims, the effort might be worth the risk. They say that they next plan to investigate ways to foil such attacks by modifying traditional locks.