Samsung Pay can now store your coronavirus vaccination card on your smartphone in the U.S., thanks to the CommonHealth app on the Play Store.
After Google added support for COVID-19 vaccination cards to Google Pay, Samsung has now announced that it is doing the same with Samsung Pay. Users of the service will be able to load their SMART Health Cards displaying their COVID-19 vaccination status within Samsung Pay. This will allow U.S. consumers to download a verifiable digital version of their vaccination record from pharmacies or health systems and securely store in on their smartphone via the CommonHealth app on supported Samsung Galaxy smartphones.
Markes listened to the first three stops from the robοt in his native language and the rest in English from a human tour guide.
“I should thank Persephone, our robot, she said very fine things,” said Christos Tenis, a Greek visitor. “I’m impressed by the cave. Of course, we had a flawless (human) guide, she explained many things. I’m very impressed.”
Persephone is not the only technology used inside the cave. There’s a cellphone app in which a visitor, scanning a QR code, can see the Alistrati Beroni. That’s a microorganism that is only found in this cave, in the huge mounds of bat droppings left behind when the cave was opened and the bats migrated elsewhere.
Optical image stabilization combined with a lot more zoom.
Apple has been beaten to the periscope “folded” camera punch by pretty much every other smartphone manufacturer, but it continues to design and patent new takes on the now-commonplace tech. It was granted a patent for a new design that includes folded optics and “lens shifting” capabilities.
Folded optics, or more commonly known as periscope cameras, are a design that allows smartphones to gain considerably more optical zoom than a typical lens design by placing the lens array parallel to the long edge of a smartphone body and bending the transmission of light to the sensor by using one or more prisms. The design has been used by Samsung, Huawei, and others to make smartphone cameras that sport massive optical zooming capabilities compared to what Apple offers.
This latest patent was filed in January of2019but finally granted and published on August 17 of this year, as noted by Patently Apple.
An add-on device for smartphones could replace blood glucose meters for measuring blood sugar. Blood sugar measurements are essential for diabetes patients who need to know their blood glucose concentration in order to regulate it with insulin. Failure to do so might result in complications from the disease. The device, designed by researchers in Taiwan, achieved 100% accuracy in a test with 20 blood samples from diabetes patients (J. Biomed. Opt. 10.1117/1.JBO.24.2.027002).
The researchers designed a compact device containing no electrical components that can be used in combination with a smartphone. The light from the smartphone’s display reflects onto the blood glucose test site (BGTS) inside the device, which contains a colorimetric test strip. The user adds a blood drop to the test strip, which is then assessed for a colour change using the phone’s front camera.
In this study, the blood drop was obtained from a vein, but the device is designed to work on drops extracted from the patient’s finger using a disposable lance that is then inserted into the device. The observed colour is split into its red, green and blue components. The researchers used the green component as an indicator of blood glucose concentration, as it could reliably distinguish the widest concentration range out of the three components.
This next jump in battery-tech could solve a lot of EV problems.
The world of the internal combustion engine will sadly, but very necessarily, come to a close at some point in many of our lifetimes. Hybrids and electric vehicles are becoming more affordable and more advanced at a rapid pace, which means batteries are taking the place of fossil fuels. This has led to an equally rapid progression in battery technology, with the main goals of improving capacity, charging times, and safety. One major advancement in this field is the advent of solid-state batteries, which promise to push the boundaries of the limitations that current lithium-ion batteries carry.
Electric vehicles have been powered by lithium-ion batteries for years, which are similar to the ones used in laptops, cell phones, and other consumer electronics. They are constructed with a liquid electrolyte inside, which makes them heavy and susceptible to instability at high temperatures. Because each individual battery pack can’t generate all that much energy on its own, several have to be linked together in series, further adding to the weight. The cost of engineering, manufacturing, and installing battery packs makes up a considerable portion of the overall cost of an electric vehicle.
Just like a cell phone, the lithium-ion batteries in electric vehicles need to be recharged. The speed at which an electric vehicle’s batteries can be charged depends on the vehicle itself, the type of batteries it uses, and on the charging infrastructure. In general, public charging stations fall into either the Level 2 or Level 3 categories, both of which can charge an EV far quicker than a standard household outlet. Level 1 and Level 2 chargers provide power to the on-board charger via AC power, which is converted to DC power to charge the battery. Level 3, which can also be called DC Fast Charging, bypasses that on-board generator and instead charges the battery directly and at a much quicker rate. Over time, however, both the battery capacity and the ability to reach peak charging rates degrade.
One of the biggest factors affecting consumer adoption of electric vehicles (EVs) is the amount of time required to recharge the vehicles—usually powered by lithium-ion batteries. It can take up to a few hours or overnight to fully recharge EVs, depending on the charging method and amount of charge remaining in the battery. This forces drivers to either limit travel away from their home chargers or to locate and wait at public charging stations during longer trips.
Why does it take so long to fully charge a battery, even those used to power smaller devices, such as mobile phones and laptops? The primary reason is that devices and their chargers are designed so the rechargeable lithium-ion batteries charge only at slower, controlled rates. This is a safety feature to help prevent fires, and even explosions, due to tiny, rigid tree-like structures, called dendrites, that can grow inside a lithium battery during fast charging and induce short-circuits inside the battery.
To address the need for a more practical lithium-ion battery, researchers from the University of California San Diego (UC San Diego) worked with scientists at Oak Ridge National Laboratory (ORNL) to conduct neutron scattering experiments on a new type of material that could be used to make safer, faster-charging batteries. The researchers produced samples of lithium vanadium oxide (Li3V2O5), a “disordered rock salt” similar to table salt but with a certain degree of randomness in the arrangement of its atoms. The samples were placed in a powerful neutron beam that enabled observing the activity of ions inside the material after a voltage was applied.
Rick Osterloh casually dropped his laptop onto the couch and leaned back, satisfied. It’s not a mic, but the effect is about the same. Google’s chief of hardware had just shown me a demo of the company’s latest feature: computational processing for video that will debut on the Pixel 6 and Pixel 6 Pro. The feature was only possible with Google’s own mobile processor, which it’s announcing today.
He’s understandably proud and excited to share the news. The chip is called Tensor, and it’s the first system-on-chip (SoC) designed by Google. The company has “been at this about five years,” he said, though CEO Sundar Pichai wrote in a statement that Tensor “has been four years in the making and builds off of two decades of Google’s computing experience.”
That software expertise is something Google has come to be known for. It led the way in computational photography with its Night Sight mode for low light shots, and weirded out the world with how successfully its conversational AI Duplex was able to mimic human speech — right down to the “ums and ahs.” Tensor both leverages Google’s machine learning prowess and enables the company to bring AI experiences to smartphones that it couldn’t before.
If you still have a device running Android 2.3.7 (the final version of Gingerbread) or older, Google won’t let you sign in to your Google account on that device starting September 27th, according to a support document (via Liliputing).
“As part of our ongoing efforts to keep our users safe, Google will no longer allow sign-in on Android devices that run Android 2.3.7 or lower starting September 27, 2021,” the company says. “If you sign into your device after September 27, you may get username or password errors when you try to use Google products and services like Gmail, YouTube, and Maps.”