Toggle light / dark theme

Hugo de Garis — Innovating Beyond the Nanoscale, Femtometer Scale Technology

Femtotech: Computing at the femtometer scale using quarks and gluons.
How the properties of quarks and gluons can be used (in principle) to perform computation at the femtometer (10^−15 meter) scale.

I’ve been thinking on and off for two decades about the possibility of a femtotech. Now that nanotech is well established, and well funded, I feel that the time is right to start thinking about the possibility of a femtotech.

You may ask, “What about picotech?” — technology at the picometer (10-12m) scale. The simple answer to this question is that nature provides nothing at the picometer scale. An atom is about 10–10 m in size.

The next smallest thing in nature is the nucleus, which is about 100,000 times smaller, i.e., 10–15 m in size — a femtometer, or “fermi.” A nucleus is composed of protons and neutrons (i.e., “nucleons”), which we now know are composed of 3 quarks, which are bound (“glued”) together by massless (photon-like) particles called “gluons.”

Hence if one wanted to start thinking about a possible femtotech, one would probably need to start looking at how quarks and gluons behave, and see if these behaviors might be manipulated in such a way as to create a technology, i.e., computation and engineering (building stuff).

In this essay, I concentrate on the computation side, since my background is in computer science. Before I started ARCing (After Retirement Careering), I was a computer science professor who gave himself zero chance of getting a grant from conservative NSF or military funders in the U.S. to speculate on the possibilities of a femtotech. But now that I’m no longer a “wager,” I’m free to do what I like, and can join the billion strong “army” of ARCers, to pursue my own passions.

China May Have Built A Third Exascale Supercomputer — And May Be Hiding Its Real Capabilities

Computer performance is measured in FLOPS, or floating-point operations per second. The first supercomputer, which was developed in 1964, could run 3,000,000 FLOPS, i.e., 3 megaFLOPS. Exa means 18 zeros, meaning 1,000,000,000,000,000,000 FLOPS. An exascale computer can perform that many operations — something that is almost impossible to imagine.

Now, there is a huge advantage to commanding that kind of computing power in today’s world. Here is what the same McKinsey report says: “Exascale computing could allow scientists to solve problems that have until now been impossible. With exascale, exponential increases in memory, storage, and compute power may drive breakthroughs in several industries: energy production, storage, transmission, materials science, heavy industry, chemical design, AI and machine learning, cancer research and treatment, earthquake risk assessment, and many more.”

Put simply, China now may have the computing power at its disposal to match, or even overtake, technology leaders like the United States in several areas that could be key to becoming the dominant economic and military power in the world. China could also pair its advances in artificial intelligence with this mind-boggling computering power and achieve technological and military dominance quite quickly.

The Craziest Megastructures Scientists Are Willing to Build

Play EVE Online ➡️ https://eve.online/Ridddle_EN_megastructures.

In this video, we explore the biggest construction sites of the future — the ones that will one day provide us with real megastructures of all kinds and purposes.

From space elevators and Dyson spheres, to enormous ships and gargantuan space stations to live in. But we won’t just marvel at their scale — the real questions are: could we really build all these in the near future, what tech do we need to get the job done, and ultimately, will it work as intended, or these megastructures will turn out to be megagraves?

In our analysis we well use real engineering projects, as well as top sci-fi examples from books, movies and also from the unique world of massive multiplayer online game EVE Online.

EVE Online — (https://eve.online/Ridddle_EN_megastructures) It is set in a rich sci-fi universe, where players can create their own character and explore a vast and complex virtual world built according to the well-thought set of consistent in-world rules.

The game is known for its intricate economy, politics, and warfare mechanics, where players can engage in a variety of activities, including mining resources, trading, fighting, and of course, building numerous megastructures with rich customisation options.

Silent lightning: US develops EW drone swarms

The US has embarked on a program to develop electronic-warfare drone swarms, the latest in its multiple projects to master what could potentially be war-winning AI and drone technology, though with significant operational and strategic implications and risks.

This month, Breaking Defense reported that the US Navy is seeking industry and government agencies to participate in a July 2024 exercise called Silent Swarm 2024, which aims to demonstrate early-stage unmanned systems’ capabilities to fight on the electromagnetic battlefield.

Breaking Defense notes that the event, hosted by Naval Surface Warfare Center Crane, will showcase “swarming, small, attritable” unmanned systems capable of distributed electromagnetic attack, deception, and digital payload delivery, with the tech must be within readiness levels (TRL) two to five, with higher numbers indicating more advanced systems.

Traumatic brain injury under-recognized as a risk factor for cardiovascular disease, says new study

Traumatic brain injury (TBI) is a leading cause of long-term disability and premature death, especially among military personnel and those playing contact sports. Substantial research has examined acute and chronic neurological consequences of TBI; however, non-neurological conditions associated with TBI are understudied.

A new review paper by investigators from Mass General Brigham presents key findings on long-term associations between TBI and cardiovascular disease, highlighting that nervous system dysfunction, neuroinflammation, changes in the brain-gut connection, and post-injury comorbidities may elevate risk of both cardiovascular and cognitive dysfunction in TBI survivors compared to the .

The review, published in The Lancet Neurology, emphasizes the need for future cardiovascular research, surveillance and intervention in TBI survivors.

Interplanetary Warfare

Space Warfare concepts from science fiction often involve war between planets, and we will discuss the science of that, and war inside a fully colonized solar system or Dyson Swarm.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-arthur.
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE
Listen or Download the audio of this episode from Soundcloud: https://soundcloud.com/isaac-arthur-148927746/interplanetary-warfare.
Cover Art by Jakub Grygier: https://www.artstation.com/artist/jakub_grygier.

Graphics Team:
Edward Nardella.
Jarred Eagley.
Justin Dixon.
Katie Byrne.
Kris Holland of Mafic Stufios: www.maficstudios.com.
Misho Yordanov.
Pierre Demet.
Sergio Botero: https://www.artstation.com/sboterod?fref=gc.
Stefan Blandin.

Script Editing:
Andy Popescu.
Connor Hogan.
Edward Nardella.
Eustratius Graham.
Gregory Leal.
Jefferson Eagley.
Luca de Rosa.
Mark Warburton.
Michael Gusevsky.
Mitch Armstrong.
MolbOrg.
Naomi Kern.
Philip Baldock.
Sigmund Kopperud.
Steve Cardon.
Tiffany Penner.

Music:
Markus Junnikkala, “Leaving the Galaxy“
AJ Prasad, “Staring Through“
Lombus, “Amino”

Armageddon-style mission to stop asteroid Bennu collision with Earth ends this week

NASA is edging closer to the conclusion of its ambitious seven-year mission, aiming to prevent a catastrophic collision of a massive asteroid named Bennu with Earth. Recent findings have indicated that there’s a 1 in 2,700 chance of Bennu slamming into Earth on September 24, 2182.

Roughly the size of the iconic Empire State Building, Bennu spans about a third of a mile wide. The potential aftermath of its predicted collision with Earth could equate to the explosive energy of 22 atomic bombs.

The asteroid makes its presence felt by passing Earth approximately every six years. However, scientists anticipate that its most perilous close encounter could be a mere 159 years away.

Boeing to test DARPA’s upcoming ‘Glide Breaker’ hypersonic interceptor

The Pentagon’s Defense Advanced Research Projects Agency (DARPA) has chosen Boeing to develop a prototype and conduct flight testing of its upcoming Glide Breaker hypersonic interceptor. An interceptor is a weapon designed to destroy other missiles mid-flight before they reach their targets. Glide Breaker is a planned huge leap forward in missile interceptors, as it’s designed to target the highly maneuverable class of weapons known as hypersonic glide vehicles, which are able to execute abrupt “zig-zag” maneuvers as they glide unpowered through Earth’s atmosphere at speeds of Mach 5 and higher. (Mach 1 is the speed of sound — about 767 mph, or 1,234 kph, at sea level.) This combination of speed and maneuverability makes such weapons much harder to defend against than traditional missiles.