Toggle light / dark theme

For those of us who don’t think that even our bowel movements will soon be inventoried, tracked and timestamped during every moment of existence, here is a just published white paper from the Rand Corporation, an influential think tank created in 1948 to offer research and analysis to the US military, which begs to differ.

The November 2020 whilte paper, published under the title “The Internet of Bodies,” focuses on the advantages and disadvantages, security and privacy risks, plus the ethical implications of what it calls a growing “Internet of Bodies (IoB).”

IoB tools are internet-connected “smart” devices increasingly available in the marketplace which promise to track and upload to the internet measurements related to individual heartbeat, blood pressure and other bodily functions in real time for purposes of health, exercise, security or other reasons.

The Russian armed forces’ modernization drive is in full swing, with multiple new weapons entering service and mass production in the coming year and beyond. Here’s a look at some of the new hardware.

In 2021, Russia’s Strategic Missile Forces will receive the new RS-28 Sarmat – liquid-fueled, MIRV-equipped heavy intercontinental ballistic missiles that will replace the R-36M2 Voevoda systems.

Sarmat can effectively hit targets within 18000 km, which is enough to reach virtually anywhere on Earth. In addition, the missile has a short boost phase, which makes it hard for a potential adversary’s air-defense systems to intercept it midcourse.

Updated Dec. 17 with State Department statement

WASHINGTON — Russia on Dec. 15 conducted a ballistic missile test that U.S. Space Command condemned as a threat to satellites in orbit.

“The nation must do something about this,” said Lt. Gen. Nina Armagno, director of staff of the Office of the Chief of Space Operations of the U.S. Space Force.

Circa 2002


The potential threat of biological warfare with a specific agent is proportional to the susceptibility of the population to that agent. Preventing disease after exposure to a biological agent is partially a function of the immunity of the exposed individual. The only available countermeasure that can provide immediate immunity against a biological agent is passive antibody. Unlike vaccines, which require time to induce protective immunity and depend on the host’s ability to mount an immune response, passive antibody can theoretically confer protection regardless of the immune status of the host. Passive antibody therapy has substantial advantages over antimicrobial agents and other measures for postexposure prophylaxis, including low toxicity and high specific activity. Specific antibodies are active against the major agents of bioterrorism, including anthrax, smallpox, botulinum toxin, tularemia, and plague. This article proposes a biological defense initiative based on developing, producing, and stockpiling specific antibody reagents that can be used to protect the population against biological warfare threats.

Defense strategies against biological weapons include such measures as enhanced epidemiologic surveillance, vaccination, and use of antimicrobial agents, with the important caveat that the final line of defense is the immune system of the exposed individual. The potential threat of biological warfare and bioterrorism is inversely proportional to the number of immune persons in the targeted population. Thus, biological agents are potential weapons only against populations with a substantial proportion of susceptible persons. For example, smallpox virus would not be considered a useful biological weapon against a population universally immunized with vaccinia.

Vaccination can reduce the susceptibility of a population against specific threats provided that a safe vaccine exists that can induce a protective response. Unfortunately, inducing a protective response by vaccination may take longer than the time between exposure and onset of disease. Moreover, many vaccines require multiple doses to achieve a protective immune response, which would limit their usefulness in an emergency vaccination program to provide rapid prophylaxis after an attack. In fact, not all vaccine recipients mount a protective response, even after receiving the recommended immunization schedule. Persons with impaired immunity are often unable to generate effective response to vaccination, and certain vaccines may be contraindicated for them (1). For example, the vaccine against hepatitis B does not elicit an antibody response in approximately 10% of vaccines, and the percentage of nonresponders is substantially higher in immunocompromised persons (1).

O,.o circa 2018.


Bats’ extraordinary super-immunity long has fascinated virologists.

The U.S. military has a long history of enlisting the help of animals in warfare. The bottlenose dolphin’s sophisticated bio sonar enabled the Navy to detect and clear underwater bombs during the Iraq War, and homing pigeons played a vital role as secret messengers during both world wars, with some awarded medals for bravery.

But there is one animal the military has had significantly less success in conscripting, and that is the bat.

Eighty-one years ago, our world-class research center in California’s Silicon Valley was born. Ground broke on Ames Research Center on Dec. 20, 1939. It was the second aeronautical laboratory established by the National Advisory Committee for Aeronautics to perform fundamental research on all things flight. From its very beginnings, Ames was a place for innovation. Tests performed in its wind tunnels transformed military aircraft during World War II and paved the way for air travel at supersonic speeds. In the 1950s and ‘60s, its researchers looked to the stars and came up with new designs and materials for spacecraft that would make human spaceflight a reality. Fast-forward to the present, and the center contributes to virtually every major agency mission through its expertise in spacecraft entry systems, robotics, aeronautics, supercomputing, and so much more! Here are things to know about Ames.

The Volatiles Investigating Polar Exploration Rover is the latest lunar exploration mission led by Ames. Launching in 2023, the mobile robot will search for water ice inside craters and other places at the Moon’s South Pole. Its survey will help pave the way for astronaut missions to the lunar surface beginning in 2024 as part of the Artemis program.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/.

Interesting…


The United States is the sole military super power in the world, but that may not last for long. Other nations are catching up in the new arms race and have dedicated massive military budgets to developing hypersonic missiles! How can the US defend against such high impact and evasive missiles? You’ll have to watch today’s new video to find out if the US has an answer of it’s own.

🔔 SUBSCRIBE TO THE INFOGRAPHICS SHOW ►

Members of the US Space Force will be known as “guardians”, it was announced on the military service’s first birthday.

US Vice President Mike Pence said: It is my honour, on behalf of the president of the United States, to announce that henceforth the men and women of the United States Space Force will be known as guardians.


Mike Pence says soldiers, sailors, airmen, Marines and guardians will be defending our nation for generations to come.