Toggle light / dark theme

Head to https://www.squarespace.com/marcushouse to save 10% off your first purchase of a website or domain using code MARCUSHOUSE

Quite the inspirational week this one with the complete set of JWST First Images. Loads of Starship and Starbase news. Last week I mentioned that it was fire time for Starbase, and…WOW… I was not wrong there. SpaceX’s Starship Booster 7 has gone for repair after explosion. Falcon 9 launches for both Starlink and finally CRS-25. We also had the very first launch of Vega C. Rocket Lab firing off another Electron, and more. So enough of this intro. Let’s crack on with it!

Everyday Astronaut — Elon Musk Explains SpaceX’s Raptor Engine!

End Screen Music — Isle of Rain by Savfk.

Join the mailing list to be notified when I release a video.
https://marcushouse.space/email-list.

👕Like this shirt? Pick it up on any product you like here.

Mr. Shadow is a song composed with Artificial Intelligence. It was created by Flow Machines, a technology that learns different music styles and then makes up its own songs based on what it’s been fed. Although the voice in the song sounds peculiar at times, I could have easily been fooled into thinking a person made this song. You can download Flow Machines onto your apple device to make your own AI music.

Force fields are a staple of science fiction, but usually regarded as only science fiction, not science fact. Today we’ll examine the notion and see what options we might have inside known science, as well as what alternatives might achieve similar effects.

See Hydrodynamic levitation at Cody’s Lab:

Visit our Website: http://www.isaacarthur.net.
Join the Facebook Group: https://www.facebook.com/groups/1583992725237264/
Support the Channel on Patreon: https://www.patreon.com/IsaacArthur.
Visit the sub-reddit: https://www.reddit.com/r/IsaacArthur/
Listen or Download the audio of this episode from Soundcloud: https://soundcloud.com/isaac-arthur-148927746/force-fields.
Cover Art by Jakub Grygier: https://www.artstation.com/artist/jakub_grygier.

Graphics Team:
Edward Nardella.
Jarred Eagley.
Justin Dixon.
Katie Byrne.
Misho Yordanov.
Murat Mamkegh.
Pierre Demet.
Sergio Botero.
Stefan Blandin.

Script Editing:
Andy Popescu.
Connor Hogan.
Edward Nardella.
Eustratius Graham.
Gregory Leal.
Jefferson Eagley.
Luca de Rosa.
Michael Gusevsky.
Mitch Armstrong.
MolbOrg.
Naomi Kern.
Philip Baldock.
Sigmund Kopperud.
Steve Cardon.
Tiffany Penner.

Music.

Cosmologist, noted author, Astronomer Royal and recipient of the 2015 Nierenberg Prize for Science in the Public Interest Lord Martin Rees delivers a thought-provoking and insightful perspective on the challenges humanity faces in the future beyond 2050. [3/2016] [Show ID: 30476]

Frontiers of Knowledge.
(https://www.uctv.tv/frontiers-of-knowledge)

Explore More Science & Technology on UCTV
(https://www.uctv.tv/science)
Science and technology continue to change our lives. University of California scientists are tackling the important questions like climate change, evolution, oceanography, neuroscience and the potential of stem cells.

UCTV is the broadcast and online media platform of the University of California, featuring programming from its ten campuses, three national labs and affiliated research institutions. UCTV explores a broad spectrum of subjects for a general audience, including science, health and medicine, public affairs, humanities, arts and music, business, education, and agriculture. Launched in January 2000, UCTV embraces the core missions of the University of California — teaching, research, and public service – by providing quality, in-depth television far beyond the campus borders to inquisitive viewers around the world.
(https://www.uctv.tv)

What happens when machines begin to question their origins?

In this short film created with generative art, we explore how artificial intelligence sees the universe, its creators, and its potential futures. I believe the emergence of artistic A.I. has touched off a new era for art that could be as profound as the first cave paintings, 50,000 years ago. If these artistic capabilities are possible after only a few decades of A.I., research, what will the next 50,000 years hold? What will we become?

Crafted by Melodysheep in collaboration with artificial intelligence.

Supported by the good people at Protocol Labs:
protocol.ai.

Special Thanks:
Midjourney.
Cruz Abalos.
Naomi Augustine.
Juan Benet.
Matthew Brown.
Zeus Kontoyannis.
Morrison Waud.

My Patreon supporters: patreon.com/melodysheep.

A camera system developed by Carnegie Mellon University researchers can see sound vibrations with such precision and detail that it can reconstruct the music of a single instrument in a band or orchestra.

Even the most high-powered and directed microphones can’t eliminate nearby sounds, ambient noise and the effect of acoustics when they capture audio. The novel system developed in the School of Computer Science’s Robotics Institute (RI) uses two cameras and a laser to sense high-speed, low-amplitude surface vibrations. These vibrations can be used to reconstruct , capturing isolated audio without inference or a microphone.

“We’ve invented a new way to see sound,” said Mark Sheinin, a post-doctoral research associate at the Illumination and Imaging Laboratory (ILIM) in the RI. “It’s a new type of , a new imaging device, that is able to see something invisible to the naked eye.”

Philip Glass to release a short silence on the matter.


The music vault is a parallel project to the Global Seed Vault (opens in new tab), which keeps the seeds of today’s trees and plants safe for the future, just in case we need to rebuild agriculture for any reason. The vault is located on the island of Spitsbergen, Norwegian territory, within the Arctic circle. It lacks tectonic activity, is permanently frozen, is high enough above sea level to stay dry even if the polar caps melt, and even if the worst happens, it won’t thaw out fully for 200 years. Just to be on the safe side, the main vault is built 120m into a sandstone mountain, and its security systems are said to be robust. As of June 2021, the seed vault had conserved 1,081,026 different crop samples.

The music is to be stored in a dedicated vault in the same mountain used by the seed vault. The glass used is an inert material, shaped into platters 75mm (3 inches) across and 2mm (less than 1/8th of an inch) thick. A laser encodes data in the glass by creating layers of three-dimensional nanoscale gratings and deformations. Machine learning algorithms read the data back by decoding images and patterns created as polarized light shines through the glass. The silica glass platters are fully resistant to electromagnetic pulses and the most challenging of environmental conditions. It can be baked, boiled, scoured and flooded without degradation of the data written into the glass. Tests to see if it really does last many thousands of years, however, can be assumed to be ongoing.

Jurgen Willis, Vice President of Program Management at Microsoft, said, “In this proof of concept, Microsoft and Elire Group worked together to demonstrate how Project Silica can help achieve the goal of preserving and safeguarding the world’s most valuable music for posterity, on a medium that will stand the test of time, using innovative archival storage in glass.”