Toggle light / dark theme

The Expanse is one of the seminal sci-fi shows of the past decade. Set centuries in the future when humans have colonized the solar system, it’s been called one of the most scientifically accurate sci-fi shows of all time. But just how much does this hold up to scrutiny?

Join this channel to get access to perks:
https://www.youtube.com/channel/UCF5F2zbc6NhJVyEiZGNyePQ/join.

Watch my video about the science of Star Trek’s phasers: https://www.youtube.com/watch?v=i0unFPbKrks.

Watch my video about the science of Star Wars’ lightsabers: https://www.youtube.com/watch?v=O5a7lHh9EpI

My avatars were cartoonishly pornified, while my male colleagues got to be astronauts, explorers, and inventors.

When I tried the new viral AI avatar app Lensa, I was hoping to get results similar to some of my colleagues at MIT Technology Review. The digital retouching app was first launched in 2018 but has recently become wildly popular thanks to the addition of Magic Avatars, an AI-powered feature which generates digital portraits of people based on their selfies.

But while Lensa generated realistic yet flattering avatars for them—think astronauts, fierce warriors, and cool cover photos for electronic music albums— I got tons of nudes.

Musicians, we have some bad news. AI-powered music generators are here — and it looks like they’re gunning for a strong position in the content-creation industry.

“From streamers to filmmakers to app builders,” claims music generating app Mubert AI, which can transform limited text inputs into a believable-sounding composition, “we’ve made it easier than ever for content creators of all kinds to license custom, high-quality, royalty-free music.”

Of course, computer-generated music has been around for quite some time, making use of various forms of artificial intelligence to come up with results that can sound equally manmade and alien.

How could we one day travel between the stars with real physics? Perhaps the greatest challenge to interstellar flight is energetics — it takes vast amounts of energy to accelerate even small ships to 20% the speed of light. But what if we could steal that energy from where? Perhaps even a black hole. Enter the “halo drive”, a video by Prof David Kipping based on his new peer-reviewed research paper on the subject.

This video is based on research conducted at the Cool Worlds Lab at Columbia University, New York. You can now support our research program directly here: https://www.coolworldslab.com/support.

Further reading and resources:
► Kipping, David (2018), “The Halo Drive: Fuel Free Relativistic Propulsion of Large Mases via Recycled Boomerang Photons”, JBIS, 71458: https://arxiv.org/abs/1903.03423
► Dyson, Freeman (1963), “Gravitational Machines”, in A.G.W. Cameron, ed., Interstellar Communication, New York Benjamin Press: https://www.ifa.hawaii.edu/~barnes/ast242_s14/Dyson_Machines.pdf.
► Breakthrough Starshot homepage: https://breakthroughinitiatives.org/initiative/3
► Our Cool Worlds video giving some background on Breakthrough Starshot: https://youtu.be/Ksb6Vh0BT_E
► Our Cool Worlds video on relativistic moving mirrors: https://youtu.be/msK9d9k6K0E
► Our Cool Worlds video on mirror distortion effects: https://youtu.be/1iNA-GTocI0
► Columbia University Department of Astronomy: http://www.astro.columbia.edu.
► Cool Worlds Lab website: http://coolworlds.astro.columbia.edu.

There’s an error in the video at around 8:30, 2 trillion joules is the cumulative energy output of a typical nuclear power station after 2000 seconds, not 20 days.

The Kardashev Scale has become a standardized way of classifying (hypothetical) advanced civilizations. The lowest rank, Type 1, is still way ahead of us — but by how much? When will we achieve Type 1 status and exactly how could we plausibly do so? In this video, we go through some estimates of when humanity might become Type 1, and in particular what kind of energy sources we could harness to achieve this feat.

You can now support our research program and the Cool Worlds Lab at Columbia University: https://www.coolworldslab.com/support.

► Kardashev (1964), “Transmission of Information by Extraterrestrial Civilizations”, Soviet Astronomy, 8217: http://adsabs.harvard.edu/abs/1964SvA
► Michio Kaku video clip from BigThink: https://youtu.be/7NPC47qMJVg.
► Wind map movie credit to Rufinoman and earth.nullschool.net: https://youtu.be/cj2JHsQUoRs.
► Wind energy calculation based off Smil (2004), “Inherent limits of renewable energies“
► References for the 3.7TW figure for tidal energy dissipation are: Cartwright 1993 (Theory of ocean tides with application to altimetry, in Satellite Altimetry in Geodesy and Oceanography, edites by R. Rummel and F. Sanso, pp. 99–141, Springer-Verlag, New York), Ray 1994 (Tidal energy dissipation: Observations from astronomy, geodesy, and oceanography, in, The Oceans, edited by S. Majumdaret al., pp. 171–185, Pa. Acad. of Sci., Easton, Pa.), Kagan & Sundermann 1996 (Kagan Dissipation of tidal energy paleotides, and evolution of the Earth-Moon system, Adv. Geophys., 38, pp. 179–266)
► Solar video comes from NASA SDO and GSFC: https://svs.gsfc.nasa.gov/12706
► Learn more about the Carno cycle here: https://en.wikipedia.org/wiki/Carnot_cycle.
► Learn more about the planetary equilibrium calculation here: https://en.wikipedia.org/wiki/Planetary_equilibrium_temperature.
► Tidal power map comes from Gunn & Stock-Williams (2012): https://www.sciencedirect.com/science/article/pii/S0960148112001310
► Outro music by Thomas Bergersen “Final Frontier”: http://www.thomasbergersen.com.
► Columbia University Department of Astronomy: http://www.astro.columbia.edu.
► Cool Worlds Lab website: http://coolworlds.astro.columbia.edu.

::Playlists For Channel::

Backwards through time? We travel forwards every day, but traveling back could let us change our past, visit old friends, or manipulate the timeline to our benefit… Although our knowledge of space and time remains incomplete, we can still use what we know to consider possible time machines. But what kind of paradoxes would this entail and how can we resolve them? Join us today on a special journey through time.

An educational video written and presented by Professor David Kipping.

This video is based on research conducted at the Cool Worlds Lab at Columbia University, New York. You can now support our research program directly here: https://www.coolworldslab.com/support.

All music used is licensed by SoundStripe.com or through Creative Commons:

The Rare Earth Hypothesis suggests that our planet may the product of an incredibly improbable sequence of events, and thus perhaps intelligent life is extremely rare in the cosmos. Here we tackle this highly influential idea and the arguments behind it. But, digging deeper, we’ll uncover some problems with the Rare Earth idea — some of which strike to the very core of our scientific quest.

Written & presented by Prof David Kipping.

→ Support our research program: https://www.coolworldslab.com/support.
→ Get Stash here! https://teespring.com/stores/cool-worlds-store.

THANK-YOU to our supporters D. Smith, M. Sloan, L. Sanborn, C. Bottaccini, D. Daughaday, A. Jones, S. Brownlee, G. Fulton, N. Kildal, M. Lijoi, Z. Star, E. West, T. Zanjonc, C. Wolfred, F. Rebolledo, L. Skov, E. Wilson, A. de Vaal, M. Elliott, B. Daniluk, M. Forbes, S. Vystoropskyi, S. Lee, Z. Danielson, C. Fitzgerald, V. Alexandrov, L. Macchia, C. Souter, M. Gillette, T. Jeffcoat, H. Jensen, F. Linker, J. Rockett, N. Fredrickson, B. Mlazgar, D. Holland, J. Alexander, E. Hanway, J. Molnar, D. Murphree, S. Hannum, T. Donkin, K. Myers, A. Schoen, K. Dabrowski, J. Black, R. Ramezankhani, J. Armstrong, K. Weber, S. Marks, L. Robinson, F. van Exter, S. Roulier, B. Smith, P. Masterson, R. Sievers, G. Canterbury, J. Kill, J. Cassese, J. Kruger, S. Way, P. Finch, S. Applegate, L. Watson, T. Wheeler, E. Zahnle, N. Gebben, B. Weaver, C. Macdonald, M. Hedlund, P. Kaup, D. Osborn, D. Gustafson, M. Hedlund, N. Laugman, P. Kaup, T. Lindén, T. Brenard & I. Banks.

Black holes are known as the most terrifying, mysterious, and fascinating objects in the Universe. Eternally hungry, they eat everything in their path and are constantly expanding. But how small and how big can a black hole be? Unlike stars and planets, black holes have no size restrictions. They grow when they eat the matter around them. Does it mean that they can be not only super large but super small? Let’s find out!

#brightside.

Credit:
Black Hole: By NASA/Goddard Space Flight Center, https://svs.gsfc.nasa.gov/11108
X-ray: By NASA/Goddard Space Flight Center/CI Lab, https://svs.gsfc.nasa.gov/10807
Black Holes: By NASA’s Goddard Space Flight Center, https://svs.gsfc.nasa.gov/13831
Burst: By NASA/Goddard Space Flight Center/Chris Smith (KBRwyle), https://svs.gsfc.nasa.gov/13886
echoes: By NASA/Goddard Space Flight Center, https://svs.gsfc.nasa.gov/12265
star: By NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR), https://svs.gsfc.nasa.gov/13805
stellar: By NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR), https://svs.gsfc.nasa.gov/13805
Suzaku: By NASA’s Goddard Space Flight Center, https://svs.gsfc.nasa.gov/11821
Star Formation: By NASA, https://commons.wikimedia.org/w/index.php?curid=19412899
Flare: By NASA/JPL/Caltech/Abhimanyu Susobhanan.
Disk Flare: By NASA/JPL-Caltech, https://photojournal.jpl.nasa.gov/catalog/PIA23687
Quasar: By NASA/CXC/M. Weiss.
CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0:
Supermassive: By Quantum squid88, https://commons.wikimedia.org/w/index.php?curid=87860610
Ton618: By Pablo Carlos Budassi, https://commons.wikimedia.org/w/index.php?curid=94445949
CC BY 4.0 https://creativecommons.org/licenses/by/4.0:
Sgr A: By EHT Collaboration, https://commons.wikimedia.org/w/index.php?curid=117933557
Messier 87: By Event Horizon Telescope, https://commons.wikimedia.org/w/index.php?curid=77916527
M87: By Event Horizon Telescope, https://commons.wikimedia.org/w/index.php?curid=102736603
ULAS J1120+0641: By ESO/M. Kornmesser, https://commons.wikimedia.org/w/index.php?curid=15700804
Jets: By ESO/WFI — https://flic.kr/p/9KgqiH, https://commons.wikimedia.org/w/index.php?curid=34550695
3C 273 Jet: By Pelligton, https://commons.wikimedia.org/w/index.php?curid=123362359
Animation is created by Bright Side.

Music by Epidemic Sound https://www.epidemicsound.com.