Toggle light / dark theme

What is the Singularity?

Not everyone is convinced. Critics point out that one of the points of exponential growth is that it cannot carry on forever. After a 50-year run, Moore’s Law is stuttering. Singularitarians retort that the laws of physics define a limit to how much computation you can cram into a given amount of matter, and that humans are nowhere near that limit. Even if Moore’s Law slows, that merely postpones the great day rather than preventing it. Others say the Singularity is just reli…gion in new clothes, reheated millenarianism with transistors and Wi-Fi instead of beards and thunderbolts. (One early proponent of Singularitarian and transhumanist ideas was Nikolai Federov, a Russian philosopher born in 1829 who was interested in resurrecting the dead through scientific means rather than divine ones.) And those virtual-reality utopias do look an awful lot like heaven. Perhaps the best way to summarise the Singularity comes from the title of a book published in 2012: the Rapture of the Nerds.


And will it lead to the extermination of all humans?

by T.C.

Are we about to see the end of universities as we know them?

The University of Everywhere is on the horizon.

It’s going to emerge while the current generation of young people mature into adulthood.

This is what it will look like and what attending it will mean:

Organizations such as edX, Coursera, Udacity, Saylor, OLI and a range of others like the United Kingdom’s long-established Open University will continue to create and refine an ever-larger catalogue of college courses that anyone in the world with an Internet connection can take, for free.

Biology Will Be the Next Great Computing Platform

https://www.wired.com/…/biology-will-be-the-next-great-comp…


In some ways, Synthego looks like any other Silicon Valley startup. Inside its beige business park facilities, a five-minute drive from Facebook HQ, rows of nondescript black server racks whir and blink and vent. But inside the metal shelving, the company isn’t pushing around ones and zeros to keep the internet running. It’s making molecules to rewrite the code of life.

Crispr, the powerful gene-editing tool, is revolutionizing the speed and scope with which scientists can modify the DNA of organisms, including human cells. So many people want to use it—from academic researchers to agtech companies to biopharma firms—that new companies are popping up to staunch the demand. Companies like Synthego, which is using a combination of software engineering and hardware automation to become the Amazon of genome engineering. And Inscripta, which wants to be the Apple. And Twist Bioscience, which could be the Intel.

All these analogies to the computing industry are more than just wordplay. Crispr is making biology more programmable than ever before. And the biotech execs staking their claims in Crispr’s backend systems have read their Silicon Valley history. They’re betting biology will be the next great computing platform, DNA will be the code that runs it, and Crispr will be the programming language.

A Physicist Has Calculated The Best Place to Put Your Router

Forget the trial and error — mathematics has proved where the best spot to place your router is.

Physicist Jason Cole has figured out a formula that can work out the best place to position your wireless router, and it ultimately depends on your house’s floor plan.

Cole started investigating the science behind router placement in an attempt to optimise his wifi signal.

How Music Generated

There is an enduring fear in the music industry that artificial intelligence will replace the artists we love, and end creativity as we know it.

As ridiculous as this claim may be, it’s grounded in concrete evidence. Last December, an AI-composed song populated several New Music Friday playlists on Spotify, with full support from Spotify execs. An entire startup ecosystem is emerging around services that give artists automated songwriting recommendations, or enable the average internet user to generate customized instrumental tracks at the click of a button.

But AI’s long-term impact on music creation isn’t so cut and dried. In fact, if we as an industry are already thinking so reductively and pessimistically about AI from the beginning, we’re sealing our own fates as slaves to the algorithm. Instead, if we take the long view on how technological innovation has made it progressively easier for artists to realize their creative visions, we can see AI’s genuine potential as a powerful tool and partner, rather than as a threat.

Low-latency JPEG XS format is optimized for live streaming and VR

You might only know JPEG as the default image compression standard, but the group behind it has now branched out into something new: JPEG XS. JPEG XS is described as a new low-energy format designed to stream live video and VR, even over WiFi and 5G networks. It’s not a replacement for JPEG and the file sizes themselves won’t be smaller; it’s just that this new format is optimized specifically for lower latency and energy efficiency. In other words, JPEG is for downloading, but JPEG XS is more for streaming.

The new standard was introduced this week by the Joint Photographic Experts Group, which says that the aim of JPEG XS is to “stream the files instead of storing them in smartphones or other devices with limited memory.” So in addition to getting faster HD content on your large displays, the group also sees JPEG XS as a valuable format for faster stereoscopic VR streaming plus videos streamed by drones and self-driving cars.

“We are compressing less in order to better preserve quality, and we are making the process faster while using less energy,” says JPEG leader Touradj Ebrahimi in a statement. According to Ebrahimi, the JPEG XS video compression will be less severe than with JPEG photos — while JPEG photos are compressed by a factor of 10, JPEG XS is compressed by a factor of 6. The group promises a “visual lossless” quality to the images of JPEG XS.

New AI systems on a chip will spark an explosion of even smarter devices

Artificial intelligence is permeating everybody’s lives through the face recognition, voice recognition, image analysis and natural language processing capabilities built into their smartphones and consumer appliances. Over the next several years, most new consumer devices will run AI natively, locally and, to an increasing extent, autonomously.

But there’s a problem: Traditional processors in most mobile devices aren’t optimized for AI, which tends to consume a lot of processing, memory, data and battery on these resource-constrained devices. As a result, AI has tended to execute slowly on mobile and “internet of things” endpoints, while draining their batteries rapidly, consuming inordinate wireless bandwidth and exposing sensitive local information as data makes roundtrips in the cloud.

That’s why mass-market mobile and IoT edge devices are increasingly coming equipped with systems-on-a-chip that are optimized for local AI processing. What distinguishes AI systems on a chip from traditional mobile processors is that they come with specialized neural-network processors, such as graphics processing units or GPUs, tensor processing units or TPUs, and field programming gate arrays or FPGAs. These AI-optimized chips offload neural-network processing from the device’s central processing unit chip, enabling more local autonomous AI processing and reducing the need to communicate with the cloud for AI processing.

Robot Cities: Three Urban Prototypes for Future Living

Before I started working on real-world robots, I wrote about their fictional and historical ancestors. This isn’t so far removed from what I do now. In factories, labs, and of course science fiction, imaginary robots keep fueling our imagination about artificial humans and autonomous machines.

Real-world robots remain surprisingly dysfunctional, although they are steadily infiltrating urban areas across the globe. This fourth industrial revolution driven by robots is shaping urban spaces and urban life in response to opportunities and challenges in economic, social, political, and healthcare domains. Our cities are becoming too big for humans to manage.

Good city governance enables and maintains smooth flow of things, data, and people. These include public services, traffic, and delivery services. Long queues in hospitals and banks imply poor management. Traffic congestion demonstrates that roads and traffic systems are inadequate. Goods that we increasingly order online don’t arrive fast enough. And the WiFi often fails our 24/7 digital needs. In sum, urban life, characterized by environmental pollution, speedy life, traffic congestion, connectivity and increased consumption, needs robotic solutions—or so we are led to believe.

/* */