Toggle light / dark theme

The propensity to cry emotional tears is uniquely human. Of all the claims to human exceptionality—consciousness, intelligence, innovation—it is the liquid that falls from our eyes when we are sad, happy, jealous, angry, and grateful, more than anything else, that we can call ours, and ours alone.

And yet the act of emotional crying is poorly understood. There is remarkably little consensus about the purpose of crying, its underlying physiology, and its impact on our moods. “What intrigued me about crying is how few people in the world have been studying it,” said Lauren Bylsma, an assistant professor of psychiatry and psychology at the University of Pittsburgh. “You would think with such a ubiquitous and important behavior, there would be more known about it.”

Magnets could be the ‘secret sauce’ required for viable nuclear fusion.

Tokamak Energy, a company working on nuclear fusion technology, has recently announced a major breakthrough in its research and development. Testing of its cryogenic power electronic technology for its superconducting magnet’s high-efficiency operation was, by all accounts, a big success.

The company’s bid to provide the world with near-limitless energy uses a combination of spherical tokamaks and high-temperature superconducting (HTS) magnets. According to reports, tests of the new power electronics showed twice the efficiency of previous systems.

“We have now invented a new type of cryogenic power supply, based on the latest power electronics devices, that is highly efficient at low temperatures. This means we have the potential to reduce cryogenic capital and running costs for HTS magnets, by 50%, or more. This novel approach will provide significant cost savings, contributing to the achievement of commercial fusion energy,” said Tokamak Energy CEO Chris Kelsall.

Full Story:

A team from the Limitless Space Institute (LSI), funded by the Defense Advanced Research Projects Agency (DARPA) and led by Dr. Harold “Sonny” White, a former NASA specialist, pioneer in warp drive or warp drive, has reported that he has discovered a veritable warp bubble in the real world. The event marks a breakthrough for scientists trying to develop a spacecraft capable of going faster than light.

Breakthrough Starshot’s ultra-lightweight spacecraft will have to travel four light-years to reach Alpha Centauri. To put it another way, our nearest neighboring star system is a mind-shattering 40,208,000,000,000 (40 trillion) km away from Earth.

As a point of reference, our fastest and most reliable technology today for long-range space travel is the ion thruster, which is powering NASA’s DART mission to a nearby asteroid at speeds of 15,000 mph (24,000 km/h). However, according to NASA, with the ion thruster, it would take 18,000 years, or approximately 2,700 human generations, to get to Alpha Centauri.

Impressively, the Breakthrough Starshot team believes its spacecraft, with the help of lasers located on Earth, will be able to reach unprecedented speeds, allowing it to travel the distance to Alpha Centauri in only 20 years. If it does reach its destination, the probe spacecraft will then send back the first-ever images taken from another solar system, allowing a never-before-seen window to distant planets that may or may not resemble Earth.