Toggle light / dark theme

https://en.wikipedia.org/wiki/Multi-armed_bandit

In probability theory, the multi-armed bandit problem (sometimes called the K- or N-armed bandit problem) is a problem in which a gambler at a row of slot machines (sometimes known as “one-armed bandits”) has to decide which machines to play, how many times to play each machine and in which order to play them. When played, each machine provides a random reward from a distribution specific to that machine. The objective of the gambler is to maximize the sum of rewards earned through a sequence of lever pulls.


(Phys.org)—A combined team of researchers from France and Japan has created a decision-making device that is based on basic properties of quantum mechanics. In their paper published in Scientific Reports (and uploaded to the arXiv preprint server), the team describes the idea behind their device and how it works.

There is a classic decision-making problem that is known as the exploration-exploitation dilemma—it is typically described by suggesting a scenario where a gambler faced with a floor full of must decide which offers the best payout on a regular basis. In real life, the solution involves feeding all of the machines coins until a discernible pattern emerges. Computer algorithms have been developed to run essentially the same process. Now, however, that approach appears to be ready for an update, as the researchers with this new effort have come up with a way to run the same sort of algorithm without using any kind of computer. Instead, they use a laser, a and feedback device. The idea is based on the fact that laws are probabilistic in nature.

The device is based on prior research that has shown that if photons are fired from a proton gun at a 45 degree angle, they will each have an equal chance of being vertically or horizontally polarized when they strike a detector—thus a stream will have equal numbers of both. But, if the filter on the gun is changed slightly, to say fire at 44 or 46 degree angles, that increase the odds of the associated polarization. The team used that fact by adding a feedback loop to the system—data sent back representing a “win” on a slot machine caused the filter to move in one direction, while a loss moved it in the other. Over time, the preponderance of wins (indicating a learning process) from one virtual machine would drive the device towards indicating it was the winning choice.

Read more

Scientists have designed a novel type of nanoscale solar cell. Initial studies and computer modelling predict these cells will outperform traditional solar panels, reach power conversion levels by over 40 percent.

Solar power cells work through the conversion of sunlight into electricity using photovoltaics. Here solar energy is converted into direct current. A photovoltaic system uses several solar panels; with each panel composed of a number of solar cells. This combines to create a system for the supply usable solar power.

To investigate what is possible in terms of solar power, the researchers have examined the Shockley-Queisser limit for different materials. This equation describes the maximum solar energy conversion efficiency achievable for a particular material, allowing different materials to be compared as candidates for power generation.

Read more

The concept of artificial intelligence got it’s start at a conference at Dartmouth in 1956. Optimism ran high and it was believed that machines would be able to do the work of humans within 20 years. Alas, it was not to be. By the 1970’s, funding dried up and technology entered the period now known as the AI winter.

Slowly, however, progress was made. Computers became increasingly able to do human tasks, such as character recognition, making recommendations on Amazon and organizing itineraries on travel sites. We didn’t see the algorithms at work, but they were there, computing on our behalf.

So the answer to our technological dilemma is, in fact, all too human. While the past favored those who could retain and process information efficiently, the future belongs to those who can imagine a better world and work with others to make it happen.

Read more

A viral video about a new app looks like a dream come true for anyone who struggles with math.

Based on the promo clip, PhotoMath, dubbed a “smart camera calculator,” appears to use smartphone cameras to scan a photo of a math equation in a textbook and display the answer instantly — similar to apps that scan barcodes and takes users to a link in a web browser. It looks like the app can also show step-by-step instructions for solving the problem.

PhotoMath’s parent company MicroBLINK launched the app this week at TechCrunch Disrupt Europe in London, TechCrunch reports. It is available in the App Store on iTunes.

Read more

But the ultimate goals of the project are nothing short of amazing: “The best possible outcome is to map the entirety of existing cache of neural network algorithms and applications to this energy-efficient substrate,” said Modha. “And, to invent entirely new algorithms that were hereto before impossible to imagine.”


IBM scientists are advancing toward “neuromorphic” computing — digital systems that process information like the brain — and launching a complete ecosystem for brain-like computing, with important near-term applications and visionary long-term prospects.

“For decades, computer scientists have been pursuing two elusive goals in parallel: engineering energy-efficient computers modeled on the human brain and designing smart computing systems that learn on their own — like humans do — and are not programmed like today’s computers,” said Dharmendra S. Modha, IBM Fellow and Chief Scientist for brain-inspired computing.

Read more

Quoted: “Traditional law is a form of agreement. It is an agreement among people and their leaders as to how people should behave. There are also legal contracts between individuals. These contracts are a form of private law that applies to the participants. Both types of agreement are enforced by a government’s legal system.”

“Ethereum is both a digital currency and a programming language. But it is the combination of these ingredients that make it special. Since most agreements involve the exchange of economic value, or have economic consequences, we can implement whole categories of public and private law using Ethereum. An agreement involving transfer of value can be precisely defined and automatically enforced with the same script.”

“When viewed from the future, today’s current legal system seems downright primitive. We have law libraries — buildings filled with words that nobody reads and whose meaning is unclear, even to courts who enforce them arbitrarily. Our private contracts amount to vague personal promises and a mere hope they might be honored.

For the first time, Ethereum offers an alternative. A new kind of law.”

Read the article here > http://etherscripter.com/what_is_ethereum.html

Quoted: “IBM’s first report shows that “a low-cost, private-by-design ‘democracy of devices’ will emerge” in order to “enable new digital economies and create new value, while offering consumers and enterprises fundamentally better products and user experiences.” “According to the company, the structure we are using at the moment already needs a reboot and a massive update. IBM believes that the current Internet of Things won’t scale to a network that can handle hundreds of billions of devices. The operative word is ‘change’ and this is where the blockchain will come in handy.”

Read the article here > https://99bitcoins.com/ibm-believes-blockchain-elegant-solut…of-things/