Menu

Blog

Archive for the ‘information science’ category: Page 3

Nov 22, 2024

Demis Hassabis, Nobel Prize winner in Chemistry: ‘We will need a handful of breakthroughs before we reach artificial general intelligence’

Posted by in categories: chemistry, information science, robotics/AI, space, time travel

However, Hassabis’ true breakthrough came just a month ago, when he and two colleagues from DeepMind won the Nobel Prize in Chemistry for their development of AlphaFold, an AI tool capable of predicting the structure of the 200 million known proteins. This achievement would have been nearly impossible without AI, and solidifies Hassabis’ belief that AI is set to become one of the main drivers of scientific progress in the coming years.

Hassabis — the son of a Greek-Cypriot father and a Singaporean mother — reflects on the early days of DeepMind, which he founded in 2010, when “nobody was working on AI.” Over time, machine learning techniques such as deep learning and reinforcement learning began to take shape, providing AI with a significant boost. In 2017, Google scientists introduced a new algorithmic architecture that enabled the development of AGI. “It took several years to figure out how to utilize that type of algorithm and then integrate it in hybrid systems like AlphaFold, which includes other components,” he explains.

“During our first years, we were working in a theoretical space. We focused on games and video games, which were never an end in themselves. It gave us a controlled environment in which to operate and ask questions. But my passion has always been to use AI to accelerate scientific understanding. We managed to scale up to solving a real-world problem, such as protein folding,” recalls the engineer and neuroscientist.

Nov 21, 2024

Photon qubits challenge AI, enabling more accurate quantum computing without error-correction techniques

Posted by in categories: chemistry, information science, quantum physics, robotics/AI

In an era where AI and data are driving the scientific revolution, quantum computing technology is emerging as another game-changer in the development of new drugs and new materials.

Dr. Hyang-Tag Lim’s research team at the Center for Quantum Technology at the Korea Institute of Science and Technology (KIST) has implemented a quantum computing algorithm that can estimate interatomic bond distances and ground state energies with chemical accuracy using fewer resources than conventional methods, and has succeeded in performing accurate calculations without the need for additional quantum error mitigation techniques.

The work is published in the journal Science Advances.

Nov 21, 2024

Revolutionizing Light Control: Caltech’s Mind-Bending 3D-Printed Optical Devices

Posted by in categories: 3D printing, augmented reality, information science

Caltech’s new optical devices, evolved by algorithms and crafted via precise 3D printing, offer advanced light-manipulation for applications like augmented reality and cameras.

Researchers at Caltech have developed a groundbreaking technology that “evolves” optical devices and fabricates them using a specialized 3D printer. These devices, composed of optical metamaterials, gain their unique properties from nanometer-scale structures. This innovation could enable cameras and sensors to detect and manipulate light in ways previously impossible at such small scales.

The research was conducted in the lab of Andrei Faraon, the William L. Valentine Professor of Applied Physics and Electrical Engineering and was published in the journal Nature Communications.

Nov 20, 2024

Novel AI algorithm captures photons in motion

Posted by in categories: information science, robotics/AI

Flying with Photons: Rendering Novel Views of Propagating Light https://arxiv.org/abs/2404.


Close your eyes and picture the iconic “bullet time” scene from “The Matrix”—the one where Neo, played by Keanu Reeves, dodges bullets in slow motion. Now imagine being able to witness the same effect, but instead of speeding bullets, you’re watching something that moves one million times faster: light itself.

Continue reading “Novel AI algorithm captures photons in motion” »

Nov 20, 2024

New model could calculate probability of intelligent life in our Universe and beyond

Posted by in categories: alien life, computing, information science, physics

A team of astrophysicists, led by our Institute for Computational Cosmology, have developed a new model that could estimate how likely it is for intelligent life to emerge in our Universe and beyond.

In the 1960s, American astronomer Dr Frank Drake came up with an equation to calculate the number of detectable extraterrestrial civilisations in our Milky Way galaxy.

More than 60 years on, researchers at Durham, the University of Edinburgh and the Université de Genève, have produced a new model based on the conditions created by the acceleration of the Universe’s expansion and the amount of stars formed instead.

Nov 19, 2024

Math professor could help answer physics of ice buildup on planes

Posted by in categories: information science, mathematics, physics, transportation

Team develops simulation algorithms for safer, greener, and more aerodynamic aircraft.


Ice buildup on aircraft wings and fuselage occurs when atmospheric conditions conducive to ice formation are encountered during flight, presenting a critical area of focus for their research endeavors.

Ice accumulation on an aircraft during flight poses a significant risk, potentially impairing its performance and, in severe cases, leading to catastrophic consequences.

Continue reading “Math professor could help answer physics of ice buildup on planes” »

Nov 16, 2024

Avi Loeb’s Statement on UAPs to the House Oversight and Accountability Committee

Posted by in categories: government, information science, robotics/AI, space

Over the past few months, I was asked multiple times by Staff of the House Committee on Oversight and Accountability whether I am available to testify before the U.S. Congress on Unidentified Anomalous Phenomena (UAPs). As a result, I cleared my calendar for November 13, 2024 and prepared the following written statement. At the end, I was not called to testify before Congress and so I am posting below my intended statement. The Galileo Project under my leadership is about to release this week unprecedented results from commissioning data of its unique Observatory at Harvard University. Half a million objects were monitored on the sky and their appearance was analyzed by state-of-the-art machine learning algorithms. Are any of them UAPs and if so — what are their flight characteristics? Unfortunately, the congressional hearing chairs chose not to hear about these scientific results, nor about the scientific findings from our ocean expedition to the site of the first reported meteor from interstellar space.

Stay tuned for the first extensive paper on the commissioning data from the first Galileo Project Observatory, to be posted publicly in the coming days. Here is my public statement.

Nov 14, 2024

It would be easier to find aliens in a parallel universe than in our own, new multiverse study claims

Posted by in categories: alien life, information science

A new model based on the famous alien-hunting Drake equation suggests that some parallel universes within the hypothetical “multiverse” could have higher chances of containing extraterrestrial life than our universe.

Nov 14, 2024

Post-Quantum API Security: Preparing Your APIs for Q-Day

Posted by in categories: computing, encryption, information science, quantum physics, security

In our increasingly interconnected digital world, the foundations of secure communication and data privacy are built upon cryptographic algorithms that have stood the test of time.


Discover how quantum computing threatens current API security and learn strategies to prepare your APIs for Q-Day by adopting post-quantum cryptography solutions.

Nov 14, 2024

IBM Launches Its Most Advanced Quantum Computers, Fueling New Scientific Value and Progress towards Quantum Advantage

Posted by in categories: chemistry, computing, information science, quantum physics

YORKTOWN HEIGHTS, N.Y., Nov. 13, 2024 /PRNewswire/ — Today at its inaugural IBM Quantum Developer Conference, IBM (NYSE: IBM) announced quantum hardware and software advancements to execute complex algorithms on IBM quantum computers with record levels of scale, speed, and accuracy.

IBM Quantum Heron, the company’s most performant quantum processor to-date and available in IBM’s global quantum data centers, can now leverage Qiskit to accurately run certain classes of quantum circuits with up to 5,000 two-qubit gate operations. Users can now use these capabilities to expand explorations in how quantum computers can tackle scientific problems across materials, chemistry, life sciences, high-energy physics, and more.

Page 3 of 32412345678Last