Toggle light / dark theme

Which Ego? And, ergo, P.Q.

circles 400 dpi

There is no “…Ego…”, but SELF-INTEREST WITH SELF ESTEEM, fueled only by SELF OWN WILL POWER and hence directed by OWN ETHOS and OWN COGNITION and OWN SENSING.

BY THE WAY:

P.Q. equates to Prudential Quotient or, better yet, to PRUDENTIAL INTELLIGENCE (P.Q.).

With Prudential Intelligence Plus Interculturalness, You Have Serenity and Productivity and, therefore, Five-Star Corporate Generals (High-Brass CEOs) are subsequently enable to structurally cope with the ‘Global Marketplace”s business-like theater of military operations.

ABSOLUTE END.

Authored By Copyright Mr. Andres Agostini

White Swan Book Author (Source of this Article)

http://www.LINKEDIN.com/in/andresagostini

http://www.AMAZON.com/author/agostini

https://www.FACEBOOK.com/heldenceo (Other Publications)

http://LIFEBOAT.com/ex/bios.andres.agostini

http://ThisSUCCESS.wordpress.com

https://www.FACEBOOK.com/agostiniandres

http://www.appearoo.com/aagostini

http://connect.FORWARDMETRICS.com/profile/1649/Andres-Agostini.html

https://www.FACEBOOK.com/amazonauthor

http://FUTURE-OBSERVATORY.blogspot.com

http://ANDRES-AGOSTINI-on.blogspot.com

http://AGOSTINI-SOLVES.blogspot.com

@AndresAgostini

@ThisSuccess

@SciCzar

This archive file was compiled from an interview conducted at the SENS Research Foundation in Mountain View, California, February 2013.

“The first person to live to 150 is alive today.” That was the promise featured on a billboard from the insurance giant Prudential in the year 2013. The advertisement was perhaps representative of a growing awareness that the possibility of substantially extended human longevity was, if not around the corner, no longer a science fiction daydream. Later the same year, search leader Google established a company, Calico, specifically dedicated to rethinking aging. It seemed as though the existing paradigm, in which thinking about longevity was all well and good — but actually investing in it crossed over into madness — was starting to crumble.

Despite these outward signs of change however, polls indicated that most people were not interested in investing — financially or emotionally — in longevity. Many saw in longevity research the problems implicit in the message of the Insurance billboard: “If I live to 150, won’t I run out of money? Will I ever be able to retire? Wouldn’t dying at 80 or 90 be just fine, really?”

In this archive file, Dr. Aubrey de Grey discusses his perspective on the reservations the people of the time had in relation to anti-aging and rejuvenation research.

What was the tipping point that would make the public want to defeat aging?
More about Dr. Aubrey de Grey:
Wikipedia:
en.wikipedia.org/wiki/Aubrey_de_Grey

SENS Research Foundation:
sens.org/research

This archive file was compiled from an interview conducted at the SENS Research Foundation in Mountain View, California, February 2013.

About Dr. Aubrey de Grey: The first Emperor of China, Qin Shi Huang, decided in the 200s BC not to die, and assembled China’s best thinkers and searchers to solve the problem of death. Things did not work out for him. As of the early 21st century, historical efforts at reliable health in old age displayed a reliable pattern of failure. While the eventual crystallization of the scientific method and resulting technology had greatly improved many people’s life expectancy, the longest possible lifespan of an individual had proved to be a much more stubborn thing. Dr. Aubrey de Grey shot to controversial prominence in the 2000s, proposing that for the first time in history, developments in a wide variety of fields made it plausible to advocate for health technology which would significantly tackle age-related disease — possibly allowing the old to live with a higher quality of life and the same low ‘risk of death’ as the young.

Wikipedia:
en.wikipedia.org/wiki/Aubrey_de_Grey

SENS Research Foundation:
sens.org/research

This archive file was compiled from audio and video documentation of a gathering of medical professionals, inventors & entrepreneurs, held at Singularity University in California, February 2013. The selected material gives a portrait of a time in which the field of health found itself at a crossroads between the mature medical institutions which had slowly evolved over hundreds of years, and a need to develop and integrate new, more flexible and scalable forms of care. About Future Med: http://futuremed2020.com/ About Singularity University: http://singularityu.org/ GPA on Facebook: on.fb.me/18NiF8z GPA on Twitter: twitter.com/GPA2030

This archive file was compiled from an interview conducted on the campus of Singularity University, February 2013. The interview took place at a time where new artificial intelligence systems, such as IBM’s Jeopardy winning “Watson,” were re-awakening the popular imagination in terms of artificial intelligence becoming a visible part of day to day life. The privacy issues regarding the ‘big-data’ that allowed many AI systems to function was also becoming a significant source of controversy. In this piece, Marty Kohn, MD, chief medical scientist on the IBM Watson Medical Team, gives insight into his personal thoughts and feelings regarding how society might both accept and reject the artificial intelligence advances of the coming years.

About the Speaker:
IBM:
researcher.ibm.com/researcher/view.php?person=us-marty.kohn

FutureMed:
futuremed2020.com/marty-kohn/

. @hjbentham . @clubofinfo . @dissidentvoice_ .#tech .#gmo .#ethics . @ieet .

Since giving my support to the May 24 march against Monsanto, I have taken the time to review some of the more unusual opinions in the debate over genetically-modified organisms (GMOs). The enthusiasts for technological development as a means of eliminating scarcity and disparity view GMOs favorably. These enthusiasts include Ramez Naam, whose book The Infinite Resource (2013) argues for human ingenuity as a sufficient force to overcome all resources shortages.
On the other end of the spectrum, alarmists like Daniel Estulin and William Engdahl argue that GMOs are actually part of a deliberate plot to burden poor nations and reduce their populations by creating illness and infertility. Such fringe figures in the alter-globalization movement regard big pharmaceutical companies, chemical companies and agri-giants as involved in a conspiracy to create a docile and dependent population. Are the opinions of either Naam or Estulin well-informed, or are they both too sensational?
Most commentators on the GMO controversy, unfortunately, seem to lean towards either the enthusiast or alarmist categories as described. Reason is often lacking on both sides, as people either blindly leap onto the GMO bandwagon as something tantamount to human progress, or they reject all biotechnology as evil by renewing the fallacy that unnatural actions are necessarily bad. The only thing both sides seem to have in common is their resistance to the Malthusian Club of Rome’s insinuations that overpopulation has to be rolled back to save the Earth’s resources.
Ramez Naam persuades us that the fire of human intellect can overcome our limited resources and allow tens of billions of people to exist on our planet without consuming all natural resources. Estulin and Engdahl reject the Club of Rome on the basis that resource limitations do not really exist and the analysis of the Club of Rome is simply aimed at justifying control of the Earth’s resources by the cherished few “elites”.
The truth rests somewhere between what the alarmist fringe critics of GMOs and the techno-progressive enthusiasts are trying to tell us. To be truthful, there is a serious controversy involving GMOs, but it is no outlandish conspiracy in any sense. It is merely an extension of the problem of greed that has burdened mankind for as long as feudal lords or capitalists have been privileged to put their selfish interests above the common good. The problem with GMOs is neither the nature of GM technology, nor something mysterious that takes place in the process of genetic modification. It is the nature of the businesses tasked with running this industry.
Whether or not certain GMOs on the market today actually cause cancer and infertility is irrelevant to the real debate. The problem is that we can guarantee that the companies engineering these organisms do not care if they cause health problems. They are only interested in downplaying or blocking bad news, and putting out constant marketing and good news about themselves. Typical of any fiercely monopolistic firm, this is not an honest relationship with the public, and corresponds to the prevailing belief in profit as the exclusive priority. For their game to be worth playing, they have to put increasing yields, shelf life and resistance to pathogens above anything else when designing crops. They have no choice than to do this, from their perspective, because the alternative is to allow themselves to be outperformed by their rivals.
The fact that corporations put their own profit above health is a systemic issue in the world economy, and it is already known to the majority of consumers. We face it every day. Most of the fast food served by multinational fast food companies is accepted to be unhealthy, so the claim that giant food companies have little interest in our health is not a conspiracy theory. It is only a rational suspicion that the agricultural producers of seeds will also put profit over the long-term health of consumers and the interests of local farmers.
In theory, genetic modification could lead not only to higher yields but healthier food. Unfortunately, the businesses involved only really care about beating competition and becoming the best supplier. This behavior poisons everything, perhaps literally, now that these companies have been entrusted to define the toxicity in crops as a defense against pests. What we can learn from this that the problem is not GMOs per se, but the aggressive greed of the corporations who desire the oligopoly on food production via GM technology.
The public harm caused by giant firms, especially when they practice their ability to lobby the state itself, already runs very deep in most facets of life. The more significant the tools made available to such firms, the greater the potential for harm. Even if specific specimens are not harmful and can be proven completely benign, the fact is that GMOs open up an unacceptable avenue for unprecedented harm and malignant corporate interests invading people’s innards. It is this, rather than the whole science of genetic modification, that should be opposed and protested against.
Genetic modification and synthetic biology do not need to be new instruments of oligopoly and monopoly. There is a benign alternative to foolishly entrusting the mastery and ownership of living organisms to greedy multinational leviathans. We can look into “biohacking”, as popularized by science and technology enthusiasts who favor the empowerment of individuals and small businesses rather than corporations. There is a strong nod in this direction in J. Craig Venter’s book, Life at the Speed of Light (2013), in which he envisages living organisms being quickly customized and modified by lone individuals with the technology of synthetic biology. Such a development would transform society for the better, eliminating any need to trust an unsympathetic and self-interested corporation like Monsanto.
DIY genetic engineering is already possible. DIY means the product will be entirely disinfected from corporate greed, and adhere to your own specifications. They would not be able to put their profit above your health, because they would not get the chance. With this, biohackers can already genetically modify organisms for their own benefit. The extent to which farmers can begin to modify their own crops using comparable technology is not yet clear, but the development nevertheless represents an extraordinary possibility.
What if farmers and consumers could decide genetically modify their own food? In that case, it would not be the profit-oriented poison that is being consumed at so many different levels as a result of corporate greed. Crops would be modified only insofar as the modification will meet the farmer’s own needs, and all the technology for this process could be open-source. This hypothetical struggle for DIY genetic engineering rather than corporate genetic engineering would be comparable to the open-source and piracy battles already raging over digital technology.
Of course, some new hazards could still conceivably emerge from DIY genetic modification, if the technology for it should become ubiquitous. However, the only risk would be from individual farmers rather than unaccountable corporations. This way, we would be moving away from giving irresponsible and vicious companies the ability to threaten health. Instead, we would be moving towards giving back individuals more control over their own diets. Of course, abuse would still occur, but it would not have global consequences or frighten millions of people in the way that current genetic engineering does.
In sum, there is no reason to complain that genetic modification is perilous in its own right. However, there is always peril in giving a great social responsibility to a profit-hungry corporation. In much the same way that large firms have captured the state machinery of our liberal democratic states to serve their greedy interests, we should expect them to be subverting health and the public good for profit.
The complex dilemma over GMOs requires not an anti-scientific or neo-Luddite reaction, but an acknowledgement that intertwined monopolistic, statist and hegemonic ambitions lead to the retardation of technology rather than progress. I have made this very case in an essay at the techno-politics magazine ClubOfINFO, and I consider it to be an important detail to keep in mind as the GMO controversy rages.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published at Dissident Voice on 23 June 2014

By Daniela Hernandez — Wired

Image: Courtesy of Modernizing Medicine

Long Island dermatologist Kavita Mariwalla knows how to treat acne, burns, and rashes. But when a patient came in with a potentially disfiguring case of bullous pemphigoid–a rare skin condition that causes large, watery blisters–she was stumped. The medication doctors usually prescribe for the autoimmune disorder wasn’t available. So she logged in to Modernizing Medicine, a web-based repository of medical information and insights.

Within seconds, she had the name of another drug that had worked in comparable cases. “It gives you access to data, and data is king,” Mariwalla says of Modernizing Medicine. “It’s been very helpful, especially in clinically challenging situations.”

Read more

University of Utah
http://st1.thehealthsite.com/wp-content/uploads/2014/05/stem-cell-redone.jpg
Mice severely disabled by a condition similar to multiple sclerosis (MS) could walk less than two weeks following treatment with human stem cells. The finding, which uncovers new avenues for treating MS, will be published online on May 15, 2014, in the journal Stem Cell Reports.

When scientists transplanted human stem cells into MS mice, they expected no benefit from the treatment. They thought the cells would be rejected, much like rejection of an organ transplant.

Instead, the experiment yielded spectacular results.

Read More

How has your work, your life, your humanity, been improved by the promise of Big Data?

What apps and online media do you use to upload personal and other info?

Singularity has flopped – that is to say, this week Johnny Depp’s new film Transcendence did not bring in as much as Pirates of the Caribbean. Though there may not have been big box office heat, there is heat behind the film’s subject: Big Data! Sure we miss seeing our affable pirate chasing treasure, but hats off to Mr. Depp who removed his Keith Richards make-up to risk chasing what might be the mightiest challenge of our century.

Singularity, coined by mathematician John von Neumann, is a heady mathematical concept tested by biotech predictions. Made popular by math and music wunderkindt turned gray hair guru of an AI movement Ray Kurzweil, Singularity is said to signify the increasing rate at which artificial intelligence will supersede human intelligence like a jealous sibling. Followers of the Singularity movement (yes, with guru comes followers) envision the time of override in the not to distant future with projections set early as 2017 and 2030. At these times, the dynamics of technology are said to set about a change in our biology, our civilization and “perhaps” nature itself. Within our current reach, we see signs of empowered tech acting out in the current human brain mapping quest and brain-computer interface systems. More to the point, there is an ever increasing onslaught of Google Alerts annoucing biotech enhancements with wearable tech. Yes indeed, here comes the age of smart prosthetics and our own AI upload of medical and personal data to the internet. Suddenly all those Selfies seem more than mere narcissistic postings against the imposing backdrop of Big Data.

Johnny Depp’s face says it all in Transcendence where Big Data determines our AI future wherein life as we know it, can and will exist online. Think beyond a 24/7 teenage plug into a smart phone or flash- driving Facebook entries. Think Neuromancer, VALIS, and Star Trek’s Borg — sci fi predecessors predicting memory transformations amounting to an existential reboot. Translated into the everyday, we’re talking more than just uploading your genetic code to 23andme. This is an imagined future where what we call “Me” will be psychologically and legally recognized as living online.

As a contemporary sci fi, Transcendence is filled with pentimento film tributes to Zombie and X-Men TakeOvers, Westerns and Romantic Tragedies. Pitting AI critics against AI visionaries, the film is a bioethics drama, where the prospect of creating online Selves will constitute a direct social threat with thoroughgoing eco consequences. At the center of the bioethics contest, we encounter the marriage and business partnership of Will and Eleanor Castor — the heroic scientist and the eco-activist whose death do us part vows are broken to unleash a future so thoroughly transformed by AI as to render biological existence “hacked” by internet code.

The romantic hubris of Transcendence is jolting with a Shakespearean twist: Dare to Upload yourself to the internet and threaten genealogy, global power. Wait, this is no Romeo and Juliet. Love and Death, Eros and Thanatos, as Herr Freud called it, stands at the center of this science fiction pivoting on Will Castor’s heroic martyrdom (played astutely by Johnny Depp). By the end of the film, we are forced to face the movie’s existential questions as moral and medical ones. With new sentient life living online, collective imagination for our biohumanity and ecosystem is left unhinged.

Transcendence Soundtrack
Image Credit: Transcendence, 2014 Original Soundtrack

While the film lifts common AI themes of transformed “self-awareness” and “identity,” the real AI deal breaker in Transcendence, and in our own lives, is Time – biological, ecological and geologic. Described as a sequential and cyclical process, Time frames our present experience, shaping both memory and imagination of that present experience. As my Buddhist philosophy professor use to say: “When you are waiting for your lover, 10 minutes feels like 1 hour; but when your lover arrives, 1 hour feels like 10 minutes.” Cognitive neuroscientists tell us that episodic memory is at once measurable and elusive of metrics — researchers can study the sequence of what we remember (like learning our ABC’s) but they struggle to discover how it feels to remember the alphabet.

Time after Will Castor’s AI is not waiting for cognitive neuroscience to catch up with a hacker’s race to design new codes, new systems, and new products for regenerating uberhuman biosystems. After all, AI Time presumes the speed of downloads to the Internet and programming APPs as if to emulate the speed of light.

Before Einstein, Neuroscience, the Internet and Apps, Time was once thought of in mythic, primal terms of genesis. In Indian cosmology, Siva, the God of Time, dances on the back of mother earth, moving us through karmic cycles of birth, life, death and rebirth. In the ancient Greco-Roman cosmos, Time is born from Chronos the three headed serpent that gives us earth, sky and the underworld. Through the ages, Time / Chronos became associated with the cycle of seasons, assigning to the process of change in light and life, the name Father Time in contrast to quiet, deep Mother Earth, which seems to absorb the underworld into her womb.

Conceived as such, Father Time has given way to our current understanding of RAM and neural memory codes leaving Mother Earth to stand in for blood, bones and stem cells. Today as we couple with technology and look to Big Data for knowledge and insight, we lose sight of when, and how, we capitulate to a fundamental misperception: That we are one and the same with the technology we create. Blinded by the light and speed of computer gazing, we mistake ourselves for our creations. We forget difference and our humanity — even if coupled with technology. For the sake of a popular drama, Transcendence pushes on the consequences of this misperception by entertaining a bioethics war over regenerating biological tissue. Like I said, this is a flick with a nod to X-Men.

With computational neuroscience sitting at the center of this passion play, it is neurobiologist and bioethicist Max, the Castor’s closest friend and film’s narrator who reminds us that we are Time emergent and memories alone are not us. Memory may be coded for upload but it cannot fully account for the what and who we are as neuroplastic creatures with uncertain futures. Yes, we are more than just code. As the father of American psychology William James once wrote, we draw from a world of “blooming buzzing confusion,” perceptions enriched with a variety of associated thoughts, sensations and reactions. That piece of wisdom may be more than a century old, but even if our behaviors might fit a statistical profile for behavioral economics, we are reminded: statistical profiles are not Us.

Coda:

Looking back to the late 1990’s, the call for the human-machine interface was met by both excitement and trepidation by frontier technologists and skeptical intellectuals. In my own backyard, I curated a 2003 symposium at Art Center College of Design with NASA scientists and a world famous cyborg, STELARC to discuss: What kind of science and technologies would push the design futures forward and would our imagined futures require the inevitable coupling of human and technology? Now more than 10 years later with advances in the Cloud, wearable tech and neuro-marketing, students have no greater skills for managing their union with the Borg. To paraphrase the thinking of my business partner, Gaynor Strachan Chun, ‘the problem is not with technology, but the way people behave with technology.’

Future Forward? Let’s skill up with the brain in mind to face the behavioral challenges with Big Data.

M. A. Greenstein, Ph.D., Lifeboat Advisor — Neuroscience / Diplomacy / Futures; Founder / Chairman, The George Greenstein Institute (GGI); Founder / Chief Innovation Officer, SM+ART

Book Review: The Human Race to the Future by Daniel Berleant (2013) (A Lifeboat Foundation publication)

Posted in alien life, asteroid/comet impacts, biotech/medical, business, climatology, disruptive technology, driverless cars, drones, economics, education, energy, engineering, ethics, evolution, existential risks, food, futurism, genetics, government, habitats, hardware, health, homo sapiens, human trajectories, information science, innovation, life extension, lifeboat, nanotechnology, neuroscience, nuclear weapons, philosophy, policy, posthumanism, robotics/AI, science, scientific freedom, security, singularity, space, space travel, sustainability, transhumanismTagged , , , , , ,

From CLUBOF.INFO

The Human Race to the Future (2014 Edition) is the scientific Lifeboat Foundation think tank’s publication first made available in 2013, covering a number of dilemmas fundamental to the human future and of great interest to all readers. Daniel Berleant’s approach to popularizing science is more entertaining than a lot of other science writers, and this book contains many surprises and useful knowledge.

Some of the science covered in The Human Race to the Future, such as future ice ages and predictions of where natural evolution will take us next, is not immediately relevant in our lives and politics, but it is still presented to make fascinating reading. The rest of the science in the book is very linked to society’s immediate future, and deserves great consideration by commentators, activists and policymakers because it is only going to get more important as the world moves forward.

The book makes many warnings and calls for caution, but also makes an optimistic forecast about how society might look in the future. For example, It is “economically possible” to have a society where all the basics are free and all work is essentially optional (a way for people to turn their hobbies into a way of earning more possessions) (p. 6–7).

A transhumanist possibility of interest in The Human Race to the Future is the change in how people communicate, including closing the gap between thought and action to create instruments (maybe even mechanical bodies) that respond to thought alone. The world may be projected to move away from keyboards and touchscreens towards mind-reading interfaces (p. 13–18). This would be necessary for people suffering from physical disabilities, and for soldiers in the arms race to improve response times in lethal situations.

To critique the above point made in the book, it is likely that drone operators and power-armor wearers in future armies would be very keen to link their brains directly to their hardware, and the emerging mind-reading technology would make it possible. However, there is reason to doubt the possibility of effective teamwork while relying on such interfaces. Verbal or visual interfaces are actually more attuned to people as a social animal, letting us hear or see our colleagues’ thoughts and review their actions as they happen, which allows for better teamwork. A soldier, for example, may be happy with his own improved reaction times when controlling equipment directly with his brain, but his fellow soldiers and officers may only be irritated by the lack of an intermediate phase to see his intent and rescind his actions before he completes them. Some helicopter and vehicle accidents are averted only by one crewman seeing another’s error, and correcting him in time. If vehicles were controlled by mind-reading, these errors would increasingly start to become fatal.

Reading and research is also an area that could develop in a radical new direction unlike anything before in the history of communication. The Human Race to the Future speculates that beyond articles as they exist now (e.g. Wikipedia articles) there could be custom-generated articles specific to the user’s research goal or browsing. One’s own query could shape the layout and content of each article, as it is generated. This way, reams of irrelevant information will not need to be waded through to answer a very specific query (p. 19–24).

Greatly similar to the same view I have written works expressing, the book sees industrial civilization as being burdened above all by too much centralization, e.g. oil refineries. This endangers civilization, and threatens collapse if something should later go wrong (p. 32, 33). For example, an electromagnetic pulse (EMP) resulting from a solar storm could cause serious damage as a result of the centralization of electrical infrastructure. Digital sabotage could also threaten such infrastructure (p. 34, 35).

The solution to this problem is decentralization, as “where centralization creates vulnerability, decentralization alleviates it” (p. 37). Solar cells are one example of decentralized power production (p. 37–40), but there is also much promise in home fuel production using such things as ethanol and biogas (p. 40–42). Beyond fuel, there is also much benefit that could come from decentralized, highly localized food production, even “labor-free”, and “using robots” (p. 42–45). These possibilities deserve maximum attention for the sake of world welfare, considering the increasing UN concerns about getting adequate food and energy supplies to the growing global population. There should not need to be a food vs. fuel debate, as the only acceptable solution can be to engineer solutions to both problems. An additional option for increasing food production is artificial meat, which should aim to replace the reliance on livestock. Reliance on livestock has an “intrinsic wastefulness” that artificial meat does not have, so it makes sense for artificial meat to become the cheapest option in the long run (p. 62–65). Perhaps stranger and more profound is the option of genetically enhancing humans to make better use of food and other resources (p. 271–274).

On a related topic, sequencing our own genome may be able to have “major impacts, from medicine to self-knowledge” (p. 46–51). However, the book does not contain mention of synthetic biology and the potential impacts of J. Craig Venter’s work, as explained in such works as Life at the Speed of Light. This could certainly be something worth adding to the story, if future editions of the book aim to include some additional detail.

At least related to synthetic biology is the book’s discussion of genetic engineering of plants to produce healthier or more abundant food. Alternatively, plants could be genetically programmed to extract metal compounds from the soil (p. 213–215). However, we must be aware that this could similarly lead to threats, such as “superweeds that overrun the world” similar to the flora in John Wyndam’s Day of the Triffids (p. 197–219). Synthetic biology products could also accidentally expose civilization to microorganisms with unknown consequences, perhaps even as dangerous as alien contagions depicted in fiction. On the other hand, they could lead to potentially unlimited resources, with strange vats of bacteria capable of manufacturing oil from simple chemical feedstocks. Indeed, “genetic engineering could be used to create organic prairies that are useful to humans” (p. 265), literally redesigning and upgrading our own environment to give us more resources.

The book advocates that politics should focus on long-term thinking, e.g. to deal with global warming, and should involve “synergistic cooperation” rather than “narrow national self-interest” (p. 66–75). This is a very important point, and may coincide with the complex prediction that nation states in their present form are flawed and too slow-moving. Nation-states may be increasingly incapable of meeting the challenges of an interconnected world in which national narratives produce less and less legitimate security thinking and transnational identities become more important.

Close to issues of security, The Human Race to the Future considers nuclear proliferation, and sees that the reasons for nuclear proliferation need to be investigated in more depth for the sake of simply by reducing incentives. To avoid further research, due to thinking that it has already been sufficiently completed, is “downright dangerous” (p. 89–94). Such a call is certainly necessary at a time when there is still hostility against developing countries with nuclear programs, and this hostility is simply inflammatory and making the world more dangerous. To a large extent, nuclear proliferation is inevitable in a world where countries are permitted to bomb one another because of little more than suspicions and fears.

Another area covered in this book that is worth celebrating is the AI singularity, which is described here as meaning the point at which a computer is sophisticated enough to design a more powerful computer than itself. While it could mean unlimited engineering and innovation without the need for human imagination, there are also great risks. For example, a “corporbot” or “robosoldier,” determined to promote the interests of an organization or defeat enemies, respectively. These, as repeatedly warned through science fiction, could become runaway entities that no longer listen to human orders (p. 83–88, 122–127).

A more distant possibility explored in Berleant’s book is the colonization of other planets in the solar system (p. 97–121, 169–174). There is the well-taken point that technological pioneers should already be trying to settle remote and inhospitable locations on Earth, to perfect the technology and society of self-sustaining settlements (Antarctica?) (p.106). Disaster scenarios considered in the book that may necessitate us moving off-world in the long term include a hydrogen sulfide poisoning apocalypse (p. 142–146) and a giant asteroid impact (p. 231–236)

The Human Race to the Future is a realistic and practical guide to the dilemmas fundamental to the human future. Of particular interest to general readers, policymakers and activists should be the issues that concern the near future, such as genetic engineering aimed at conservation of resources and the achievement of abundance.

By Harry J. Bentham - More articles by Harry J. Bentham

Originally published on April 22 in h+ Magazine

Interested in this subject? Subscribe to receive free CLUBOF.INFO articles by Email