Toggle light / dark theme

Medical historian compares the coronavirus to the 1918 flu pandemic: Both were highly political

Additionally, some reports have suggested that then-President Woodrow Wilson downplayed the virus, but that is a “wrong and a false trope of popular history,” Markel said. Wilson, who would later contract the virus, was organizing and commanding the U.S. effort in World War I and once the war ended, he sailed for Paris, where he stayed until April of 1919 organizing a peace treaty and the League of Nations, Markel said.

“The federal government played a very small role in American public health during that era. It was primarily a city and state role and those agencies were hardly downplaying it,” he said.

Unlike today, there was no CDC or national public health department. The Food and Drug Administration existed but consisted of a very small group of men. Additionally, there were no antibiotics, intensive care units, ventilators, IV fluids or vaccines. “You got a bed or maybe nursing care,” Markel said.

Ransomware reportedly to blame for outage at US hospital chain

It doesn’t appear staff or patient information was compromised.


Health care provider Universal Health Services, one of the largest chains in the US, has been hit by an apparent ransomware attack, TechCrunch reported. UHS facilities in California, Florida, North Dakota, Arizona, and other locations began noticing problems early Sunday, with some locations reporting locked computers and phone systems.

Some UHS hospitals had to use pen and paper to file patient information as a result, according to NBC News.

The hospital system, which has more than 400 locations in the US and the UK, said in a statement on Monday that its IT network across several facilities was offline “due to an IT security issue.” No patient or employee data appears to have been compromised, according to the statement, which did not mention malware or ransomware.

World’s smallest fine particle air pollution sensor fits inside a phone

Air pollution involving very fine dust, such as PM2.5 particles, poses a serious threat to human health. Scientists in Austria have developed what they call the smallest particle sensor in the world, designed specifically to detect these harmful pollutants and offer a highly localized picture of air quality by being integrated into wearables and mobile devices.

According to the World Health Organization, air pollution contributes to more than four million premature deaths each year. While PM10 particles with a diameter of 10 microns or less can also make their way into their lungs, the finer PM2.5 particles are even more dangerous, as they can penetrate the lung barrier, slip into the blood stream and, through chronic exposure, cause severe forms of cardiovascular and respiratory disease, along with other health problems.

Concentrations of PM2.5 particles can be gauged through monitoring stations positioned around cities and regions, in fact the US Environmental Protection Agency uses a nationwide network of these stations to track air quality trends. But scientists from Austria’s Graz University of Technology (TU Graz) have been working on a more cost-effective, compact and versatile solution that can alert individual users of dangerous conditions in real time.

Using deep learning to control the unconsciousness level of patients in an anesthetic state

In recent years, researchers have been developing machine learning algorithms for an increasingly wide range of purposes. This includes algorithms that can be applied in healthcare settings, for instance helping clinicians to diagnose specific diseases or neuropsychiatric disorders or monitor the health of patients over time.

Researchers at Massachusetts Institute of Technology (MIT) and Massachusetts General Hospital have recently carried out a study investigating the possibility of using learning to control the levels of unconsciousness of patients who require anesthesia for a medical procedure. Their paper, set to be published in the proceedings of the 2020 International Conference on Artificial Intelligence in Medicine, was voted the best paper presented at the conference.

“Our lab has made significant progress in understanding how anesthetic medications affect and now has a multidisciplinary team studying how to accurately determine anesthetic doses from neural recordings,” Gabriel Schamberg, one of the researchers who carried out the study, told TechXplore. “In our recent study, we trained a using the cross-entropy method, by repeatedly letting it run on simulated patients and encouraging actions that led to good outcomes.”

Novel cell membrane model could be key to uncovering new protein properties

The cell membrane, the wall-like boundary between the cell interior and its outside environment, is primarily made up of two kinds of biomolecules: lipids and proteins. Different lipid species closely pack together to form a double layer, or “bilayer,” the membrane’s fundamental structure, while proteins are embedded within or attached to the bilayer.

Membrane proteins are responsible for various important cellular activities, and their dysfunction can lead to serious health issues. Studying protein structures and how they behave will help scientists better understand their connection to diseases and aid in developing therapeutics.

A team of researchers led by Vanderbilt University has recently shed light on how membrane proteins could be influenced by the lipids around them. By developing a novel type of membrane model, the scientists were able to show that the shape and behavior of a protein can be altered by exposure to different compositions.

Ventilator-Associated Pneumonia: Diagnosis, Treatment, and Prevention

While critically ill patients experience a life-threatening illness, they commonly contract ventilator-associated pneumonia. This nosocomial infection increases morbidity and likely mortality as well as the cost of health care. This article reviews the literature with regard to diagnosis, treatment, and prevention. It provides conclusions that can be implemented in practice as well as an algorithm for the bedside clinician and also focuses on the controversies with regard to diagnostic tools and approaches, treatment plans, and prevention strategies.

Patients in the intensive care unit (ICU) are at risk for dying not only from their critical illness but also from secondary processes such as nosocomial infection. Pneumonia is the second most common nosocomial infection in critically ill patients, affecting 27% of all critically ill patients (170). Eighty-six percent of nosocomial pneumonias are associated with mechanical ventilation and are termed ventilator-associated pneumonia (VAP). Between 250,000 and 300,000 cases per year occur in the United States alone, which is an incidence rate of 5 to 10 cases per 1,000 hospital admissions (134, 170). The mortality attributable to VAP has been reported to range between 0 and 50% (10, 41, 43, 96, 161).

Unmanned aircraft transport organs in Las Vegas

Las Vegas hosted two successful test flights using unmanned aircraft to carry human organs and tissue last week. On Sept. 17th, MissionGo, a provider of unmanned aviation solutions and Nevada Donor Network, conducted two unmanned flights — one of which was the longest organ delivery flight in Unmanned Aircraft System (UAS) history. The first flight involved transport of research corneas fromSouthern Hills Hospital and Medical Center to Dignity Health — St. Rose Dominican, San Martín Campus.

Scientists Discover Why We Need Sleep – “Important Work Is Being Done”

In very early life, sleep helps build the brain’s infrastructure, but it then takes on an entirely new decluttering role.

Prolonged sleep deprivation can lead to severe health problems in humans and other animals. But why is sleep so vital to our health? A UCLA-led team of scientists has answered this question and shown for the first time that a dramatic change in the purpose of sleep occurs at the age of about 2-and-a-half.

Before that age, the brain grows very rapidly. During REM sleep, when vivid dreams occur, the young brain is busy building and strengthening synapses — the structures that connect neurons to one another and allow them to communicate.

/* */