By connecting several less-advanced chips into one, Chinese companies could circumvent the sanctions set by the US government.
I’m excited to share my latest Opinion article on AI at The Hill, a top political site/paper read by the White House and Congress:
Regardless what politicians promise, this age of AI and robots will also affect the size and growth rates of the U.S. government. Federal and state government may not immediately take up with automation and AI to the extent the private sector does, but eventually the stark rationality of lower overhead expenses—and thus lower taxes for citizens—will prevail.
This is a good thing. A smaller, nimble, more efficient government will benefit the majority of people.
Zoltan Istvan writes and speaks on transhumanism, artificial intelligence, and the future. He is the author of “The Transhumanist Wager,” and is the subject of the forthcoming biography by Dr. Ben Murnane and Changemakers Books titled, “Transhuman Citizen: Zoltan Istvan’s Hunt for Immortality.”
The Telangana state government in South India, in collaboration with various agricultural aid organizations and technology companies, launched a groundbreaking project known as “Saagu Baagu.” This initiative focused on assisting 7,000 chilli farmers with AI-powered tools, marking a significant step…
Saagu Baagu shows AI’s growing role in agriculture, helping developing-world farmers achieve sustainable and profitable practices.
Abstract. Important progress has been made over the last decade in the classification, imaging, and treatment of neuroendocrine neoplasm (NENs), with several new agents approved for use. Although the treatment options available for patients with well-differentiated neuroendocrine tumors (NETs) have greatly expanded, the rapidly changing landscape has presented several unanswered questions about how best to optimize, sequence, and individualize therapy. Perhaps the most important development over the last decade has been the approval of 177 Lu-DOTATATE for treatment of gastroenteropancreatic-NETs, raising questions around optimal sequencing of peptide receptor radionuclide therapy (PRRT) relative to other therapeutic options, the role of re-treatment with PRRT, and whether PRRT can be further optimized through use of dosimetry among other approaches. The NET Task Force of the National Cancer Institute GI Steering Committee convened a clinical trial planning meeting in 2021 with multidisciplinary experts from academia, the federal government, industry, and patient advocates to develop NET clinical trials in the era of PRRT. Key clinical trial recommendations for development included 1) PRRT re-treatment, 2) PRRT and immunotherapy combinations, 3) PRRT and DNA damage repair inhibitor combinations, 4) treatment for liver-dominant disease, 5) treatment for PRRT-resistant disease, and 6) dosimetry-modified PRRT.
While NASA is well-known for advancing various technologies for the purposes of space exploration, whether it’s sending spacecraft to another world or for use onboard the International Space Station (ISS), the little-known fact is that these same technologies can be licensed for commercial use to benefit humankind right here on the Earth through NASA’s Spinoff program, which is part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. This includes fields like communication, medical, weather forecasting, and even the very mattresses we sleep on, and are all featured in NASA’s annual Spinoff book, with NASA’s 2024 Spinoff book being the latest in sharing these technologies with the private sector.
“As NASA’s longest continuously running program, we continue to increase the number of technologies we license year-over-year while streamlining the development path from the government to the commercial sector,” Daniel Lockney, Technology Transfer Program Executive at NASA Headquarters, said in a statement. “These commercialization success stories continually prove the benefits of transitioning agency technologies into private hands, where the real impacts are made.”
One example is a medical-grade smartwatch called EmbracePlus developed by Empatica Inc., which uses machine learning algorithms to monitor a person’s vitals, including sleep patterns, heart rate, and oxygen flow. EmbracePlus reached mass production status in 2021 and has been approved by the U.S. Food and Drug Administration (FDA) with the goal of using the smartwatch for astronauts on future spaceflights, including the upcoming Artemis missions, along with medical patients back on Earth.
MKUltra is not referenced explicitly on Stranger Things — the popular Netflix show — but the series seems to be inspired by the controversial CIA program. In the show, a government laboratory is conducting illegal experiments on a young girl and other persons, torturing them, and harnessing their special abilities for their own purposes. This is similar to the goals of the CIA human experimentation project, which was started 70 years ago.
Controversial and unethical experiments were conducted on human subjects by the Agency for the MKUltra project, including the use of mind control techniques and the administration of drugs such as LSD and other chemicals. Electroshock, hypnosis, sensory deprivation, verbal and sexual abuse, and other forms of torture were also part of the non-consensual experiments, which were created because the CIA was convinced that communists had discovered a way to control human minds. Its activities — which were hidden and classified before their files being destroyed after an investigation — remain a subject of concern and investigation to this day.
MKUltra was a CIA program involving the research and development of chemical and biological agents. According to official documents, it was “concerned with the research and development of chemical, biological and radiological materials capable of employment in clandestine operations to control human behavior.”
BRUSSELS — Three of Europe’s biggest satellite fleet operators — SES, Eutelsat and Hispasat — explained why they are investing in the European Commission’s Iris2 multi-orbit satellite constellation, designed as a public-private partnership with the Commission and the 22-nation European Space Agency (ESA).
Three weeks before their SpaceRise consortium’s best-and-final bid is due, these companies said Iris2 gives them part ownership in a global medium-and low-Earth-orbit network whose capex is mainly government funded.
To view the entire article, become a subscriber!
When Taiwan Semiconductor Manufacturing Co. (TSMC) is prepping to roll out an all-new process technology, it usually builds a new fab to meet demand of its alpha customers and then either adds capacity by upgrading existing fabs or building another facility. With N2 (2nm-class), the company seems to be taking a slightly different approach as it is already constructing two N2-capable fabs and is awaiting for a government approval for the third one.
We are also preparing our N2 volume production starting in 2025,” said Mark Liu, TSMC’s outgoing chairman, at the company’s earnings call with financial analysts and investors. “We plan to build multiple fabs or multiple phases of 2nm technologies in both Hsinchu and Kaohsiung science parks to support the strong structural demand from our customers. […] “In the Taichung Science Park, the government approval process is ongoing and is also on track.”
TSMC is gearing up to construct two fabrication plants capable of producing N2 chips in Taiwan. The first fab is planned to be located near Baoshan in Hsinchu County, neighboring its R1 research and development center, which was specifically build to develop N2 technology and its successor. This facility is expected to commence high-volume manufacturing (HVM) of 2nm chips in the latter half of 2025. The second N2-capable fabrication plant by is to be located in the Kaohsiung Science Park, part of the Southern Taiwan Science Park near Kaohsiung. The initiation of HVM at this plant is projected to be slightly later, likely around 2026.
From blanket bans to specific prohibitions
Previously, OpenAI had a strict ban on using its technology for any “activity that has high risk of physical harm, including” “weapons development” and “military and warfare.” This would prevent any government or military agency from using OpenAI’s services for defense or security purposes. However, the new policy has removed the general ban on “military and warfare” use. Instead, it has listed some specific examples of prohibited use cases, such as “develop or use weapons” or “harm yourself or others.”