Toggle light / dark theme

It can track objects the size of a golf ball traveling at up 30000 kilometers per hour in LEO.


There’s a new giant space radar in Costa Rica that can track orbital debris as small as two centimeters. It was built by LeoLabs, a company that provides commercial radar tracking services for objects in Low Earth Orbit, which has declared the site fully operational less than a year after breaking ground. LeoLabs CEO Dan Ceperley said it’s the “most advanced commercial space radar of its kind” — one that’s capable of tracking objects the size of a golf ball traveling at up 30000 kilometers per hour.

The radar can keep an eye on both active satellites and space junk, which make up the vast majority of man-made objects found in LEO. They’re also the risks LeoLabs’ customers — made up of satellite operators, defense, space and regulatory agencies, insurance and scientific institutions — want to keep tabs on.

Space junk has increasingly occupied the Earth’s orbit over the past few decades, and it’s only bound to become a bigger issue in the coming years as private companies deploy more and more massive satellite constellations. Debris flying around in space is a huge threat to the ISS and future manned missions, giving rise to the need for a company like LeoLabs. Ed Lu, the company’s co-founder, explains that “[t]he number one danger to astronauts aboard the International Space Station has been and is today the risk of orbital debris that is too small to be tracked by the US Department of Defense going through the hull.”

Splitting water using suspensions of particulate carbon nitride-based photocatalysts may be a cheap way to produce hydrogen, but efficiencies have remained low. Now, Shen and colleagues use doped carbon nitride-based Z-scheme heterostructures to split water with a solar-to-hydrogen efficiency of 1.1% in the presence of metal-based co-catalysts.

Behind the scenes of the Electron-Ion Collider, green accelerators that waste no energy, and chiral magnetic effect results debuting this summer.

When the Electron Ion Collider received the go-ahead in January 2020, it became the only new major accelerator in the works anywhere in the world.

“All the stars aligned,” said Elke-Caroline Aschenauer, Brookhaven National Laboratory Staff Scientist and a leader in developing the EIC plans. “We have the technology to build this unique particle accelerator and detector to do the measurements that, together with the underlying theory, can for the first time provide answers to longstanding fundamental questions in nuclear physics.”