Toggle light / dark theme

Researchers observe hidden deformations in complex light fields

Researchers have recently observed a fascinating effect in the behavior of twisted light when it reflects off surfaces.


Everyday experience tells us that light reflected from a perfectly flat mirror will give us the correct image without any deformation. Interestingly, this is not the case when the light field itself is structured in a complex way. Tiny deformations appear.

How the MAVEN spacecraft — led by CU Boulder — could help pave the way for human exploration on Mars

Dr Shannon Curry said she believes humans will first land on Mars — at the earliest — in 2040, but more realistically 2050. And 2075 before Mars colonization! Very realistic prediction, and I enthusiastically agree.


NASA’s MAVEN spacecraft, led by scientists at the University of Colorado Boulder, was supposed to operate for one year when it entered orbit on September 21, 2014. Ten years later, the Mars Atmosphere and Volatile Evolution orbiter has been a boon to scientists studying the red planet and they hope it will remain in operation for years to come.

In May, MAVEN researchers got to watch as a huge solar storm hit the planet along with a massive dose of radiation. The MAVEN spacecraft is an orbiter, so it won’t ever land on the surface of Mars like the Curiosity and Perseverance rovers. Instead, it’s designed to examine the Martian atmosphere, which principal investigator Shannon Curry said “holds a number of secrets in terms of our past, present, and future.”

Here are some takeaways from Curry’s interview with Colorado Matters.

Google’s UNREAL New AI

The rapid advancement of AI-generated content is challenging our understanding of authenticity and creativity, raising significant ethical, regulatory, and existential questions about the future of human-AI collaboration Questions to inspire discussion AI-Generated Content Revolution 🎙️Q: How is Google’s Notebook LM.

Caltech’s laser headset becomes 1st-ever device to predict stroke noninvasively

A team of engineers and scientists from Caltech and the Keck School of Medicine at USC has created a noninvasive, headset-based device that can assess a patient’s stroke risk by monitoring blood flow and volume changes during a breath-holding test.

The device uses a laser-based system and has demonstrated promising results in distinguishing between individuals with low and high stroke risk.

“With this device, for the first time, we are going to have a way of knowing if the risk of someone having a stroke in the future is significant or not based on a physiological measurement,” says Simon Mahler, a co-lead author of the study.