Copilot+ PCs are the fastest, most intelligent, and longest lasting Windows PCs ever built. Subscribe to Microsoft on YouTube here: https://aka.ms/SubscribeT…
The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trained adapters to improve performance for…
The future of optical communications just got brighter. In a development reported in Advanced Photonics, researchers from Nanjing University have introduced iso-propagation vortices (IPVs), a novel concept that offers a solution to a long-standing challenge faced by scientists and engineers: how to increase information processing capacity while overcoming the limitations of traditional vortex beams.
Researchers used sound to reveal hidden patterns in protein folding, emphasizing the role of hydrogen bonds and water molecules in shaping protein structures.
Scientists have transformed their data into sounds to uncover how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids to fold into a functional protein. Their study, published in the Proceedings of the National Academy of Sciences, offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.
“A protein must fold properly to become an enzyme or signaling molecule or whatever its function may be — all the many things that proteins do in our bodies,” said University of Illinois Urbana-Champaign chemistry professor Martin Gruebele, who led the new research with composer and software developer Carla Scaletti.
Testing two families of large language models (LLMs) (GPT and LLaMA2) on a battery of measurements spanning different theory of mind abilities, Strachan et al. find that the performance of LLMs can mirror that of humans on most of these tasks. The authors explored potential reasons for this.