Toggle light / dark theme

The battle between integration and workspace will take a while

Well, I find this a bit disappointing. I was hoping that the contest between global workspace theory (GWT) and integrated information theory (IIT) would be announced sometime this year. Apparently, I’m going to have to wait awhile:

Pitts describes the intention of this competition as “to kill one or both theories,” but adds that while he is unsure that either will be definitively disproved, both theories have a good chance of being critically challenged. It’s expected to take three years for the experiments to be conducted and the data to be analyzed before a verdict is reached.

Three years. And of course there remains no guarantee the results will be decisive. Sigh.

The World’s Longest Immersed Tunnel Is Almost Built—a $7 Billion Project Without a Tunnel Boring Machine

What if the future of tunnels wasn’t about digging? The Fehmarnbelt Tunnel, the world’s largest immersed tunnel, is being built without a single tunnel boring machine. Instead, engineers are using a bold, unconventional method that’s faster, more precise, and environmentally conscious. Stretching 18 kilometers beneath the Baltic Sea, this $7 billion project is set to transform travel and trade in Europe.

Did Earth’s Deepest Earthquake Really Happen? New Research Disputes Record-Breaking Aftershock

A re-examination of the 2015 Bonin Islands earthquake disproved earlier claims of a record-breaking deep aftershock in the lower mantle, identifying instead 14 aftershocks linked to a metastable olivine wedge in the upper mantle. This finding advances understanding of deep earthquake mechanisms and Earth’s interior dynamics.

A study published in The Seismic Record challenges previous reports about the May 2015 magnitude 7.9 Bonin Islands earthquake sequence. The main earthquake, which ruptured deep near the base of the upper mantle, was not followed by an aftershock extending into the lower mantle to record-breaking depths, as earlier claims suggested.

Hao Zhang of the University of Southern California and colleagues re-analyzed the aftershock sequence and found no evidence of a 751-kilometer-deep aftershock, previously described as the deepest earthquake ever recorded.

Achromatic arbitrary polarization control in the terahertz band by tunable phase compensation

Polarization is a key parameter in light–matter interactions and is consequently closely linked to light manipulation, detection, and analysis. Terahertz (THz) waves, characterized by their broad bandwidth and long wavelength, pose significant challenges to efficient polarization control with existing technologies. Here, we leverage the mesoscale wavelength characteristics of THz waves and employ a mirror-coupled total internal reflection structure to mechanically modulate the phase difference between p-and s-waves by up to 289°. By incorporating a liquid crystal phase shifter to provide adaptive phase compensation, dispersion is eliminated across a broad bandwidth. We demonstrate active switching of orthogonal linear polarizations and handedness-selective quarter-wave conversions in the 1.6–3.4 THz range, achieving an average degree of linear/circular polarization exceeding 0.996. Furthermore, arbitrary polarization at any center frequency is achieved with a fractional bandwidth exceeding 90%. This customizable-bandwidth and multifunctional device offers an accurate and universal polarization control solution for various THz systems, paving the way for numerous polarization-sensitive applications.

Unlocking the Speed of Light: The Future of Data Storage Is Here

Programmable photonic latch memory https://opg.optica.org/oe/fulltext.cfm?uri=oe-33-2-3501&id=567359


Researchers have unveiled a programmable photonic latch that speeds up data storage and processing in optical systems, offering a significant advancement over traditional electronic memory by reducing latency and energy use.

Fast, versatile volatile photonic memory could enhance AI, sensing, and other computationally intense applications.

Programmable Photonic Latch Technology

Researchers have created a new type of optical memory called a programmable photonic latch, which is both fast and scalable. This memory unit provides a high-speed solution for temporary data storage in optical processing systems, utilizing silicon photonics to enhance performance.

Microsoft CEO: “Agents Will Replace ALL Software”

Start building on Together AI at https://www.together.ai/berman and for a limited time unlock free access to Llama 3.2 and FLUX schnell model endpoints.

Join My Newsletter for Regular AI Updates 👇🏼
https://forwardfuture.ai.

My Links 🔗
👉🏻 Subscribe: / @matthew_berman.
👉🏻 Twitter: / matthewberman.
👉🏻 Discord: / discord.
👉🏻 Patreon: / matthewberman.
👉🏻 Instagram: / matthewberman_ai.
👉🏻 Threads: https://www.threads.net/@matthewberma
👉🏻 LinkedIn: / forward-future-ai.

Media/Sponsorship Inquiries ✅
https://bit.ly/44TC45V