Toggle light / dark theme

Tesla’s Elon Musk responds to UN World Food Program director’s call to “solve world hunger”

A few days ago, United Nations World Food Program (WFP) director David Beasley told CNN that a small group of ultra-wealthy individuals such as Tesla and SpaceX CEO Elon Musk could help solve world hunger with just a fraction of their net worth. Musk’s net worth currently stands at $311 billion thanks to a recent rally in TSLA stock, effectively making the CEO the world’s wealthiest individual today.

While speaking at CNN’s Connect the World with Becky Anderson, Beasley called for billionaires to “step up now, on a one-time basis.” He also noted that even just 2% of Musk’s current net worth could solve world hunger. This translates to roughly about $6 billion. “$6 billion to help 42 million people that are literally going to die if we don’t reach them. It’s not complicated,” the UN WFP director said.

Musk has now responded to Beasley’s statements. While responding to a post on Twitter which highlighted that the UN World Food Program actually raised $8.4 billion in 2,020 Musk noted that if the WFP could explain exactly how $6 billion would solve world hunger, then he would be more than willing to sell some TSLA stock right now. This is a key point as most of Musk’s net worth is tied to his majority stake in Tesla. This means that for Musk to have $6 billion in cash, he’d have to sell TSLA stock, which would then be taxed.

Simple, Brainless Organisms Store Memories Externally

Barely-alive creatures, such as the slime mold pictured, are able to produce “memories” — they just store them in their physical surroundings rather than a brain. “A slime mould is not a fungus or mould, but is in fact a protist, which is really the odds and ends of the natural world that don’t fit in with the rest of our taxonomic grouping system,” said PhD student Christopher Reid who led the study.

Is it possible to know where you’ve been when you don’t have a brain? Depending on your definition of “know,” the answer may be yes. Researchers have shown that the slime mold, an organism without anything that resembles a nervous system (or, for that matter, individual cells), is capable of impressive feats of navigation. It can even link food sources in optimally spaced networks. Now, researchers have shown it’s capable of filling its environment with indications of where it has already searched for food, allowing it to “remember” its past efforts and focus its attention on routes it hasn’t explored.

This Airplane Will Fly Into The Stratosphere On SunPower Without Using A Drop Of Fossil Fuels

Circa 2019 😃


“SolarStratos has an opportunity to push the limits of what we think is humanly possible and prove that renewable energy has the capacity to power our lives while preserving our planet. We are fortunate to energize SolarStratos with SunPower’s industry-leading solar technology and look forward to further showcasing the value of innovative and reliable solar solutions for the world to see.”

The company is also changing the way the whole world thinks about renewable energy…at least, that is their goal. SunPower doesn’t just want to power buildings and farms. They want to use their durable and efficient solar panels for all the types of applications available. They believe that anything that can and needs to be powered, should be powered by natural sources, like the sun.

SunPower has a pioneering legacy of powering unique solar projects. Their high-efficiency solar cells are the driving power for many amazing vehicles. In addition to now supporting the airplane SolarStratos, the company has previously supported the following projects:

Global catastrophic and existential risks: the weightiest complex phenomena?

Anders Sandberg, University of Oxford.

One of the deepest realizations of the scientific understanding of the world that emerged in the 18th and 19th century is that the world is changing, that it has been radically different in the past, that it can be radically different in the future, and that such changes could spell the end of humanity as we know it. An added twist arrived in the 20th century: we could ourselves be the cause of our demise. In the late 20th century an interdisciplinary field studying global catastrophic and existential risks emerged, driven by philosophical concern about the moral weight of such risks and the realization that many such risks show important commonalities that may allow us as a species to mitigate them. For example, much of the total harm from nuclear wars, supervolcanic eruptions, meteor impacts and some biological risks comes from global agricultural collapse. This talk is going to be an overview of the world of low-probability, high-impact risks and their overlap with questions of complexity in the systems generating or responding to them. Understanding their complex dynamics may be a way of mitigating them and ensuring a happier future.

Follow us on social media:
https://twitter.com/sfiscience.
https://instagram.com/sfiscience.
https://facebook.com/santafeinstitute.
https://facebook.com/groups/santafeinstitute.
https://linkedin.com/company/santafeinstitute.

https://complexity.simplecast.com.
https://aliencrashsite.org

Film Farming — Japan’s Top Inventions

Growing veggies on a thin film that allows nutrients and water to pass through while blocking viruses and bacteria.


[Skip Intro] 0:46
Watch more full episodes of Japan’s Top Inventions on NHK WORLD-JAPAN!
https://www3.nhk.or.jp/nhkworld/en/ondemand/program/video/to…-jti034-hp.
More quality content available on NHK WORLD-JAPAN!
https://www3.nhk.or.jp/nhkworld/en/ondemand/video/?cid=wohk-yt-2108-jti034-hp.

A Japanese farming technique using film shows potential for crop cultivation in arid regions and areas affected by soil degradation.

Restaurants prep for long-term labor crunch by turning to robots to work the fryer, shuttle food to tables

Ron Hetrick, a labor economist at EMSI and one of the report’s authors, said that as a whole the industry is not yet able to bring robotics in at a meaningful level. But future restaurant business models will continue to evolve as labor challenges remain. He expects business models could change so that the amount of service customers need drops.

“You will probably lose out on the amount of restaurants that you can go sit in,” Hetrick said.

Miso’s Bell said that software engineers are always in high demand, but the company is facing “normal challenges” in terms of worker availability. The current supply chain crunch is more of an immediate concern.

First Seal of Historic SAM Analog at Biosphere 2 — Kai Staats — 2021 Mars Society Virtual Convention

Title: A data analysis of the first hermetic seal of SAM–a hi-fidelity, hybrid physicochemical and bioregenerative human habitat analog at the Biosphere 2

Track Code: AM-8

Abstract:
SAM is a Space Analog for the Moon and Mars. This hi-fidelity, hermetically sealed habitat analog and research center is composed of a living quarters for four crew, workshop, dual airlocks, and greenhouse with temperature, humidity, and carbon dioxide level controls. SAM incorporates a half acre indoor/outdoor Mars yard with scaled crater, synthetic lava tube, and gravity offset rig for use in sealed pressure suits. SAM leverages the world class expertise and facilities at the University of Arizona’s Biosphere 2 and the Controlled Environment Agriculture Center (CEAC). As with other analogs, SAM welcomes research teams from around the world in an effort to inform near-future, long-duration human habitation of the Moon and Mars. With the close of June 2,021 a six months refurbishing of the 1987 prototype for the Biosphere 2 Test Module was completed. A crew of five were sealed inside for four hours. This was the first hermetic seal of this iconic vessel in three decades. The paper summarizes the data and findings pertaining to this closure, with review of the internal atmospheric pressure, CO2, O2, humidity and temperature data, including the effect of activation of a CO2 scrubber built by Paragon SDC for NASA.

From the 24th Annual International Mars Society Convention, held as a Virtual Convention worldwide on the Internet from October 14–17, 2021. The four-day International Mars Society Convention, held every year since 1,998 brings together leading scientists, engineers, aerospace industry representatives, government policymakers and journalists to talk about the latest scientific discoveries, technological advances and political-economic developments that could help pave the way for a human mission to the planet Mars.

Conference Papers and some presentations will be available on www.MarsPapers.org.

For more information on the Mars Society, visit our website at www.MarsSociety.org.

Direct Analysis and Quantification of Metaldehyde in Water using Reactive Paper Spray Mass Spectrometry

Circa 2016 Basically means we can see contaminated water easier.


Detection and quantification of contaminants or pollutants in surface waters is of great importance to ensure safety of drinking water and for the aquatic environment1,2,3,4,5,6. Metaldehyde (CH3CHO)4 is a cyclic tetramer of acetaldehyde and is used extensively around the world as a molluscicide in agriculture for the control of slugs to protect crops. Large amounts of metaldehyde residues (from ‘slug pellets’) become mobilized, especially during periods of rainfall, seeping into reservoirs, rivers and groundwater, from which drinking water is sourced. Although metaldehyde has low toxicity, cases of metaldehyde poisoning and death in both humans and animals have been reported6,7,8. The United States Environmental Protection Agency (EPA) re-registered metaldehyde as a ‘restricted use pesticide’ and required risk-reduction measures to be adopted due to the potential short-term and long-term effects on wildelife9,10. The World Health Organization (WHO) classifies metaldehyde as a “moderately hazardous” pesticide (class II)11. In Europe, the European Commission has adopted a directive that restricts pesticides levels to 0.1 μg/L in drinking water12,13. Water companies and environmental agencies are under increasing pressure to routinely monitor levels of metaldehyde residues in water courses as part of their legal obligation14. As such there is an increasing need to develop effective analytical methods for detecting and quantifying metaldehyde in water samples at the source. In particular in-situ monitoring is required to ensure water management practices are based on empirical, up-to-date information which provides a better understanding of competing factors, risk and requirement.

Rapid analytical methods for in-situ analysis of metaldehyde in water, if available, would provide critical information on water quality for water companies and regulation bodies to manage exposures. Quantitative analysis of metaldehyde has been reported using various ex-situ methods based on solid-phase extraction8,15 followed by gas chromatography (GC) or high performance liquid chromatography (HPLC) with mass spectrometry (MS)7,14,15,16,17,18. However, each of these analytical methods involves extensive sample preparation including extraction, separation, and derivatization, resulting in increased cost and time of analysis. As will be demonstrated in this study, ambient ionization (AI) combined with tandem mass spectrometry (MS/MS) can overcome such limitations19,20,21,22.

AI is a form of ionization that is performed on unmodified samples in open air and the method is capable of providing almost instantaneous data while minimizing sample preparation22,23,24,25,26,27,28,29. Some of the most popular AI techniques include desorption electrospray ionization (DESI)30, extractive electrospray ionization (EESI)31,32,33,34,35,36, desorption atmospheric pressure chemical ionization (DAPCI)37,38,39, and direct analysis in real time (DART)40,41. AI-MS shows promise as an analytical tool for in-situ applications and has been demonstrated in a variety of fields where timely intervention is highly desirable such as: homeland security23, food safety42, pharmaceutical drug development43, and environmental monitoring44. There are several advantages to using in-situ AI methods capable of onsite analysis.