Toggle light / dark theme

Rice breeding breakthrough could feed billions

An international team has succeeded in propagating a commercial hybrid rice strain as a clone through seeds with 95 percent efficiency. This could lower the cost of hybrid rice seed, making high-yielding, disease resistant rice strains available to low-income farmers worldwide. The work was published Dec. 27 in Nature Communications.

First-generation hybrids of crop plants often show higher performance than their parent strains, a phenomenon called hybrid vigor. But this does not persist if the hybrids are bred together for a second generation. So when farmers want to use high-performing hybrid plant varieties, they need to purchase new seed each season.

Rice, the staple crop for half the world’s population, is relatively costly to breed as a hybrid for a yield improvement of about 10 percent. This means that the benefits of hybrids have yet to reach many of the world’s farmers, said Gurdev Khush, adjunct professor emeritus in the Department of Plant Sciences at the University of California, Davis. Working at the International Rice Research Institute from 1967 until retiring to UC Davis in 2002, Khush led efforts to create new rice high-yield rice varieties, work for which he received the World Food Prize in 1996.

Variety of healthy eating patterns linked with lower risk of premature death

A variety of healthy eating patterns are linked to reduced risk of premature death, according to a new study led by Harvard T.H. Chan School of Public Health researchers. They found that participants who scored high on adherence to at least one of four healthy eating patterns were less likely to die during the study period from any cause and less likely to die from cardiovascular disease, cancer, or respiratory disease, compared with people with lower scores. The findings are consistent with the current Dietary Guidelines for America, which recommend multiple healthy eating patterns.

“The Dietary Guidelines for Americans are intended to provide science-based dietary advice that promotes and reduces major chronic diseases. Thus, it is critical to examine the associations between DGAs-recommended dietary patterns and long-term outcomes, especially mortality,” said corresponding author Frank Hu, Fredrick J. Stare Professor of Nutrition and Epidemiology and chair of the Department of Nutrition.

The study will be published online January 9, 2023, in JAMA Internal Medicine.

Princeton Chemists Create Quantum Dots at Room Temperature Using Custom Protein

Researchers at Princeton’s Department of Chemistry discovered the first known de novo protein that catalyzes, or drives, the synthesis of quantum dots.

Nature uses 20 canonical amino acids.

<div class=””> <div class=””><br />Amino acids are a set of organic compounds used to build proteins. There are about 500 naturally occurring known amino acids, though only 20 appear in the genetic code. Proteins consist of one or more chains of amino acids called polypeptides. The sequence of the amino acid chain causes the polypeptide to fold into a shape that is biologically active. The amino acid sequences of proteins are encoded in the genes. Nine proteinogenic amino acids are called “essential” for humans because they cannot be produced from other compounds by the human body and so must be taken in as food.<br /></div> </div>

How Robot Tongues Are Measuring Taste For The Food And Beverage Industry

Year 2019 face_with_colon_three


The matter of taste and how it is influenced by external factors is a subject of fascination for many people (witness the proliferation of polls about which sense you would give up if needed, for example). In the foodservice industry, the question of how people perceive flavors is big business, used to predict upcoming food trends and what will resonate with tomorrow’s fickle diner.

In a nice touch of irony, this inherently human sensory experience is being increasingly monitored — and replicated — by artificial intelligence and other technological advances.

99% Efficiency: Princeton Engineers Have Developed a New Way To Remove Microplastics From Water

Princeton Engineering researchers have developed a cost-effective way to use breakfast foods to create a material that can remove salt and microplastics from seawater.

The researchers used egg whites to create an aerogel, a versatile material known for its light weight and porosity. It has a range of uses, including water filtration, energy storage, and sound and thermal insulation. Craig Arnold, the Susan Dod Brown Professor of Mechanical and Aerospace Engineering and vice dean of innovation at Princeton, leads a lab that focuses on creating new materials, including aerogels, for engineering purposes.

One day, sitting in a faculty meeting, he had an idea.

Puzzling Biochemists for Decades: Reconstruction of Two-Billion-Year-Old Enzyme Solves a Long-Standing Mystery

The research team reconstructed an ancestral enzyme by searching databases for corresponding modern enzymes, using the obtained sequences to calculate the original sequence, and introducing the corresponding gene sequence into lab bacteria to produce the desired protein. The enzyme was then studied in detail and compared to modern enzymes.

The research team, led by Professors Mario Mörl and Sonja Prohaska, focused on enzymes called tRNA nucleotidyltransferases, which attach three nucleotide building blocks in the sequence C-C-A to small RNAs (transfer RNAs) in cells. These RNAs are subsequently used to supply amino acids.

<div class=””> <div class=””><br />Amino acids are a set of organic compounds used to build proteins. There are about 500 naturally occurring known amino acids, though only 20 appear in the genetic code. Proteins consist of one or more chains of amino acids called polypeptides. The sequence of the amino acid chain causes the polypeptide to fold into a shape that is biologically active. The amino acid sequences of proteins are encoded in the genes. Nine proteinogenic amino acids are called “essential” for humans because they cannot be produced from other compounds by the human body and so must be taken in as food.<br /></div> </div>

Game changer: World’s first cow-dung-powered tractor is here

During its pilot run, carbon emissions were slashed from 2,500 to 500 metric tons.

A British company has created a pioneering tractor that could be a game changer in the green energy-striving agricultural industry.

“The T7 liquid methane-fuelled tractor is a genuine world-first and another step towards decarbonizing the global agricultural industry and realizing a circular economy,” said Chris Mann, co-founder of Bennamann, a company that deals with methane energy products.


CNH Industrial.

The ground-breaking cow-dung powered 270 horsepower tractor is said to perform on par with counterparts driven by normal diesel engines, according to multiple media reports on Friday.

Researchers Discover That Our Ancient Ancestors Were More Complex Than Previously Thought

A new study by researchers at the University of Nottingham has shed light on the complexity of our ancient ancestors, solving an important piece of the animal evolution puzzle.

A new study by researchers at the University of Nottingham has revealed that our ancient ancestors were more complex than originally thought, solving an important piece of the animal evolution puzzle.

In the distant past, animals underwent a significant evolution by developing bilateral symmetry and two gut openings. This allowed them to move faster through the early seas, find food and extract nutrients more efficiently, and protect themselves from predators. The success of this trait can be seen in the diverse range of animals that still possess bilateral symmetry and two gut openings today, including humans, starfish, sea cucumbers, elephants, crickets, and snails. Additionally, a group of simple marine worms called Xenacoelomorphs also exhibit this trait, despite lacking the complex features of other animals.

You can now visit EPIC, the world’s most advanced lab-grown meat facility

UPSIDE Foods (formerly Memphis Meats) has opened what it claims is the world’s most advanced cultivated meat production facility — and it wants you to stop by.

Cultivated meat: Demand for meat is higher than ever, but the process of raising and slaughtering livestock is bad for the environment (and arguably unethical), so transitioning away from it has a lot of upsides.

Most people really enjoy eating meat, though, and plant-based alternatives can’t quite replicate its taste and texture — but cultivated meat, advocates say, is the real deal.

Dr. Stuart Minchin, Ph.D. — Sustainable Pacific Development Through Science, Knowledge & Innovation

Is the Director General of the Pacific Community (SPC — https://www.spc.int/about-us/director-general) which is the largest intergovernmental organization in the Pacific and serves as a science and technology for development organization owned by the 26 Member countries and territories in the Pacific region.

SPC’s 650 member staff deliver services and scientific advice to the Pacific across the domains of Oceans, Islands and People, and has deep expertise in food security, water resources, fisheries, disasters, energy, maritime, health, statistics, education, human rights, social development and natural resources.

Dr. Minchin previously served as the Chief of the Environmental Geoscience Division of Geoscience Australia, and has an extensive background in the management and modelling of environmental data and the online delivery of data, modelling and reporting tools for improved natural resource management. He has a long track record of conceiving, developing and delivering transformational and innovative projects in the Environmental and Natural Resource Management domains.

Dr. Minchin has represented Australia in key international forums and was Australia’s Principal Delegate to both the UN Global Geospatial Information Management Group of Experts (UNGGIM) and the Intergovernmental Group on Earth Observations (GEO).

Dr. Minchin has previously been responsible for the Environmental Observation and Landscape Science (EOLS) research program in CSIRO and prior to that was a Principal Scientist with the Victorian Department of Sustainability and Environment.

Dr. Minchin has a PhD in Aquatic/Environmental Chemistry, from Monash University, where he also did his undergraduate work in Chemistry achieving a BSc (Hons). He also holds a BSc (Aquatic Science), Aquatic Chemistry and Aquatic Biology from Deakin University.

/* */