Toggle light / dark theme

Electrical Conductance Reveals Complex Fractals

Researchers find that a phenomenon called multifractality manifests in the conductance fluctuations of a 2D electron gas as the gas undergoes a topological phase transition.

Fractals are geometric patterns that repeat themselves across different length scales. Such patterns are ubiquitous, appearing in the outlines of snowflakes, in swirls of turbulent fluids, and in graphs tracing the highs and lows of financial markets. Now Aveek Bid and his colleagues at the Indian Institute of Science in Bangalore show that fractals can also emerge in the electrical-conductance fluctuations of a 2D electron gas in graphene as the electron gas transitions between two topological phases [1]. The results confirm predictions made earlier this year [2].

Subject a 2D electron gas to a strong perpendicular magnetic field, and its Hall conductance—the conductance perpendicular to an induced current—takes on certain discrete values. But during a transition from one discrete value to another, this conductance can exhibit fluctuations. Bid and his colleagues measured these fluctuations in the 2D electron gases of two graphene-based devices. Using detailed data analysis, they determined that the conductance fluctuations contained patterns that could be accurately described by a multifractal—a fractal that scales spatially in several different ways.

Elon Musk Outlines His Plans For Twitter And Reveals Why He Bought It

With his Twitter takeover set to be completed this week, Elon Musk has outlined some of his vision for the social media giant. Speaking on Twitter (where else?) Musk claimed that he didn’t buy Twitter for financial gain, but he do so to “try to help humanity.”

Addressing his message to advertisers on the platform, the multi-billionaire said he believes “the relentless pursuit of clicks” has ultimately resulted in the extreme political polarization we see around the world today. While this is good for profits, Musk argues, it results in meaningful dialogue being lost.

Lydie Evrard — Deputy Director General, IAEA — Head of the Department of Nuclear Safety and Security

Protecting People, Society & Environment — Lydie Evrard, Deputy Director General; Head, Department of Nuclear Safety & Security, International Atomic Energy Agency (IAEA)


Lydie Evrard (https://www.iaea.org/about/organizational-structure/departme…d-security) is Deputy Director General and Head of the Department of Nuclear Safety and Security at the International Atomic Energy Agency (IAEA).

Ms. Evrard’s department focuses on the protection of people, society and the environment from the harmful effects of ionizing radiation, whether the cause is an unsafe act or a security breach, and her team aims to provide a strong, sustainable and visible global nuclear safety and security framework. Her department was created in 1996 as a response to the Chernobyl nuclear accident.

Prior to joining the IAEA, Ms. Evrard held the role of Commissioner at the French Nuclear Safety Authority (ASN).

Ms. Evrard started her career in the field of engineering, joining the French Ministry of Energy as an engineer and she has worked extensively in the regulatory field over the last 25 years in positions including as Unit Head at the Industry, Research and the Environment Direction of France’s Ministry of the Environment (Paris Region); Deputy Head of the Paris Region Division of the Nuclear Safety Authority (ASN) and subsequently Head of the Authority’s waste, decommissioning, fuel cycle facilities, research facilities and contaminated soils remediation Department. At the ASN, Ms. Evrard handled both radiation protection and nuclear safety issues. In particular, she led, together with counterparts at the Ministry of Energy, the 2013–2015 national plan for the management of radioactive materials and waste and coordinated the stress tests performed on research and fuel cycle facilities, following the Fukushima Daiichi accident.

Hybrid Intelligence: Coupling AI and the Human Brain | Edward Boyden bigthink

Edward Boyden is a Hertz Foundation Fellow and recipient of the prestigious Hertz Foundation Grant for graduate study in the applications of the physical, biological and engineering sciences. A professor of Biological Engineering and Brain and Cognitive Sciences at MIT, Edward Boyden explains how humanity is only at its infancy in merging with machines. His work is leading him towards the development of a “brain co-processor”, a device that interacts intimately with the brain to upload and download information to and from it, augmenting human capabilities in memory storage, decision making, and cognition. The first step, however, is understanding the brain on a much deeper level. With the support of the Fannie and John Hertz Foundation, Ed Boyden pursued a PhD in neurosciences from Stanford University.

The Hertz Foundation mission is to provide unique financial and fellowship support to the nation’s most remarkable PhD students in the hard sciences. Hertz Fellowships are among the most prestigious in the world, and the foundation has invested over $200 million in Hertz Fellows since 1963 (present value) and supported over 1,100 brilliant and creative young scientists, who have gone on to become Nobel laureates, high-ranking military personnel, astronauts, inventors, Silicon Valley leaders, and tenured university professors. For more information, visit hertzfoundation.org.

TRANSCRIPT

Edward Boyden: Humans and machines have been merging for thousands of years. Right now I’m wearing shoes, I have a microphone on my jacket, we all probably used our phones at least once today… And we communicate with the augmentation of all sorts of amplification and even translation technologies: You can speak into a machine, and it’ll translate the words you’re saying in nearly real time.

So I think what might be different in the years to come is a matter of degree, not a matter of kind. One concept that I think is emerging is what I like to call the brain coprocessor, a device that intimately interacts with the brain. It can upload information to the brain and download information from it. Imagine that you could have a technology that could replace lost memories or augment decision making or boost attention or cognition. To do that though we have to understand how the brain works at a very deep level.

Although over a third of a million patients have had brain implants or neural implants that stimulate the nervous system, so far they’ve operated in an open-loop fashion. That is, they drive activity in the brain, but not in a fully-responsive fashion. What we want to do is to have bi-directional communication to the brain: Can you read and write information continuously, and supply—maybe through coupling these interfaces to silicon computers— exactly the information the brain needs?

Rejuvenation Startup Summit 2022 started to publish videos of selected talks

The Inaugural Rejuvenation Startup Summit 2022, brought to you by the Forever Healthy Foundation, took place with over 400 participants from over 30 countries in October. It is a vibrant networking event that aims to accelerate the development of the rejuvenation biotech industry. The Summit brings together startups, members of the longevity venture capital / investor ecosystem, and researchers interested in founding or joining a startup – all aiming to create therapies to vastly extend the healthy human lifespan. We started to publish videos with a first set of selected speakers on the 2022 summit:

Elon Musk Believes Tesla Stock Will Be Worth More Than Apple and Saudi Aramco Combined

Elon Musk made a bold prediction during Tesla’s Q3 2022 earnings call stating that Tesla would grow to become an enormous company by the end of this decade.

Tesla CEO Elon Musk dazzled and entertained listeners during the call, which was full of jokes and ambitious goals. That’s when he made the bold statement that Tesla could surpass both Apple and Saudi Aramco’s market cap in the future.

Back in 2017, Elon Musk said Tesla would exceed Apple’s market cap of $700 billion in just a few years. Tesla did just that back in 2020 during its glorious bull run and hit the $1 trillion mark during the height of the 2021 stock market bull run.

Ben Goertzel | Beyond AGI: Imagining the Unimaginable

Dr. Ben Goertzel, a self-described Cosmist and Singularitarian, is one of the world’s leading researchers in artificial general intelligence (AGI), natural language processing, cognitive science, data mining, machine learning, computational finance, bioinformatics, and virtual worlds and gaming He has published a dozen scientific books, 100+ technical papers, and numerous journalistic articles.

Ben Goertzel | Artificial General Intelligence: An Overview

Dr. Ben Goertzel, a self-described Cosmist and Singularitarian, is one of the world’s leading researchers in artificial general intelligence (AGI), natural language processing, cognitive science, data mining, machine learning, computational finance, bioinformatics, and virtual worlds and gaming He has published a dozen scientific books, 100+ technical papers, and numerous journalistic articles.

What Can Brain Scans Really Tell Us?

Since the infancy of functional magnetic resonance imaging (fMRI) in 1990, people have been fascinated by the potential for brain scans to unlock the mysteries of the human mind, our behaviors and beliefs. Many breathtaking applications for brain scans have been devised, but hype often exceeds what empirical science can deliver. It’s time to ask: What’s the big picture of neuroscience and what are the limitations of brain scans?

The specific aims of any research endeavor depend on who you ask and what funding agency is involved, says Michael Spezio, associate professor of psychology, data science and neuroscience at Scripps College. Some people believe neuroscience has the potential to explain human cognition and behavior as a fully mechanistic process, ultimately debunking an “illusion of free will.” Not all neuroscientists agree that free will is a myth, but it’s a strong current these days. Neuroscience also has applications in finance, artificial intelligence, weapons research and national security.

For other researchers and funders, the specific aim of neuroscience involves focusing on medical imaging, genetics, the study of proteins (proteomics) and the study of neural connections (connectomics). As caring persons who are biological, neurological, physical, social and spiritual, we can use neuroscience to think carefully and understand our humanity and possible ways to escape some of the traps we’ve built for ourselves, says Spezio. Also, brain scans can enhance research into spirituality, mindfulness and theory of mind – the awareness of emotions, values, empathy, beliefs, intentions and mental states to explain or predict others’ behavior.

What is ‘dark data’? How digital information is quietly sapping energy

Digitalization generated 4 percent of the total greenhouse emissions in 2020.

More than half of the digital data firms generate is collected, processed, and stored for single-use purposes. Often, it is never re-used. This could be your multiple near-identical images held on Google Photos or iCloud, a business’s outdated spreadsheets that will never be used again, or data from internet of things sensors that have no purpose.

This “dark data” is anchored to the real world by the energy it requires. Even data that is stored and never used again takes up space on servers — typically huge banks of computers in warehouses. Those computers and those warehouses all use lots of electricity.


Gorodenkoff/iStock.

This is a significant energy cost that is hidden in most organizations. Maintaining an effective organizational memory is a challenge, but at what cost to the environment?

/* */