Toggle light / dark theme

This essay was posted last year, removed, and is back with small changes. Enjoy.

I became interested in Beyond Earth Orbit- Human Space Flight by way of a college paper I helped my wife research some years ago. Her project for an ethics class was nuclear weapons. I stumbled upon the book “Project Orion, the true story of the atomic spaceship” by George Dyson and was hooked. I had been a science fiction fan in my youth but like most people I thought space operas were only to be realized in the far future. Project Orion changed my worldview. Since then my made up mind has been unmade several times concerning most of the “common knowledge” floating around about space flight in this 21st century. Much of what is generally believed to be true about our space program is made up of recent hearsay used to hype products that further a business plan. When I read these infomercials endlessly repeated as fact I get pretty upset, mostly because exposing these “facts” as false advertising almost always results in vicious attacks. The private space cult fanatics disgust me and I will not apologize for my hard feelings about these people. They mislead, obfuscate, and insult and dogpile anyone who disagrees with their dogma.

It was a slow step by step process but I came to realize the path to the stars is a narrow one. I found the U.S. space effort, described as being on “the flexible path”, to be going nowhere. There is no Flexible Path. The path to colonizing the solar system is narrow indeed due to the laws of physics and materials science. Science fiction movies have conditioned the public to believe such natural laws can be violated and technology that breaks these laws is possible and immanent. This attitude has led to much waste and many tragedies in the past decades and there is soon to come great disappointment over breakthroughs that are far easier said than done. By way of political contributions and backroom deals, the flexible path scheme came into existence as a way of making money for a small group of investors looking to cash in on public ignorance of technology through influence peddling. It is a convoluted and confusing story and perhaps the best way to make the truth clear is to start at the desired end and work backwards.

If the end goal is new worlds for humankind to inhabit, the earliest practical portrayal of a possible new world was in the 1929 work, “The World, The Flesh, and The Devil”, by socialist John Desmond Bernal. I must say I am no socialist (or capitalist), but I am someone who is often unhappy with people at either end of that spectrum. Space is not about politics- it is about survival. More than just surviving- thriving. Human beings need earth-like conditions to thrive and a artificial hollow moon as described by Bernal can provide those conditions.Though the sphere proposed by Bernal does not address artificial gravity, the hollow sphere concept does, if spun, allow for earth gravity on the inner surface at the equator. Hollow spheres in space can provide habitats for thousands, millions, perhaps even tens of billions of people. Space is big, with quite large quantities of rock floating around and plenty of solar energy waiting to be exploited. And tens of thousands of icy comets. Solar energy and low gravity resources in the asteroid belt mean that building on a much larger scale than we do on earth is practical. While we construct thousand foot supertankers and skyscrapers with some difficulty in earth gravity, the same masses of metal and concrete in space can form a shell many miles in diameter with many times less energy expended.

The most interesting fact of all about Bernal spheres is that building them is not any kind of futuristic science fiction undertaking in terms of materials and engineering. The sphere is the strongest shape and the energy to melt and refine ore and the various rocks and ices are available, and so there are no apparent showstoppers. Fill a Bernal sphere with comet water and air and spin and humankind has created a new world to live in. Enclosed worlds capable of traveling for centuries to other star systems when the time comes. While we have the technology, amazingly, to build such hollow moons right now, we lack only a single medical procedure to allow for star travel- revivable cryopreservation. This one key piece of technology, which also breaks no laws of physics, is all that holds the human race back from colonizing the galaxy. This future is not the hyperspace or warp drive or stargate fantasies the public has in mind. Though slowboats do not lend themselves well to screenplays and formula blockbusters, they are exciting to those who understand what is possible in the near future, in just a matter of decades. But before these new worlds can be manufactured, probably near the end of this century, humankind must first establish an infrastructure in deep space to enable that industry.

To live in space is different than just surviving a visit. Missions based on how much radiation and zero G debilitation a human being can survive are certain to fail. Providing earth radiation levels and gravity is certain to succeed. Radiation is the first killer, and lack of gravity as a debilitator is the second made even worse by the first. To set up an infrastructure that will allow colonies and eventually migration requires spaceships and these radiation and hypogravity hazards cannot be avoided. The only guaranteed shield against the heavy nuclei component of cosmic radiation is mass and distance. The only practical spaceship shielding is 14 or more feet of water. The only way to propel this much mass around the solar system is with nuclear energy. Nuclear activities in earth orbit are not acceptable. Lifting thousands and eventually millions of tons of water into earth orbit are also not plausible. This path of reasoning leads to the moon where nuclear activities are permissible and there is water. The only way to get to the moon is with Heavy Lift Vehicles like the Saturn V and the future SLS. The only way to transport fissionables to the moon safely is with Heavy Lift Vehicles. And this is where the private space agenda rears it’s ugly head. HLV’s and anything needing massive governmental resources, such as nuclear energy, are blasphemy to the private space cult. While their dogma preaches that cheap lift can be had with smaller kerosene rockets with a high launch rate, they go on to enable missions beyond earth orbit by way of fuel depots and transfer in space. For a scientifically ignorant public this all makes sense. But it is the kerosene-hydrogen disconnect that exposes the private space flexible path as a business plan to fool taxpayers into subsidizing a Low Earth Orbit space tourism industry for the ultra-rich.

Liquid hydrogen does not store well and is very difficult to transfer. It is difficult on the ground but in space it has never been done because it is such a nightmare. The entire transfer system and receiving tank have to be pre-cooled with liquid helium and a perfect pre-cool is physically impossible. This generates liquid hydrogen boil-off that must be re-liquified- which generates the exo-thermic form of hydrogen- that generates more boil-off. Compounded by space radiation and zero gravity effects, this is all a real mess that no one wants to talk about. Like radiation shielding, it is a topic avoided by private space advocates to the point of hurling insults. Not only is hydrogen hard to handle on the ground and much harder to deal with in space, an engine burning it requires a turbopump ten times more powerful than one for a kerosene engine. Which is why kerosene is hyped by private space as such a wonderful propellent- because both handling hydrogen and using hydrogen engines is much more expensive and cuts into projected profit margins. So why does the orbital fuel depot and transfer concept specify liquid hydrogen? If kerosene is so much better then why bother with liquid hydrogen in orbital fuel depots? Because there is no substitute for hydrogen Earth Departure Stages when it comes to escaping earth’s gravitational field. Using other propellants multiplies the size of these stages several times. Any human missions Beyond Earth Orbit not using liquid hydrogen Earth Departure Stages look like Battlestar Galactica. Because of the Apollo program and every study done on any BEO missions, private space knows they cannot claim otherwise and get away with it. So private space advocates avoid this subject like the plague. Since it is not practical to store or transfer liquid hydrogen in space a direct launch out of orbit, like the Apollo program, is required. The laws of physics have not changed since the 1960’s. Since the inferior lift vehicles advocated in the flexible path are only capable of boosting a few tons at a time out of orbit, Heavy Lift Vehicles become necessary. Thus, there is no substitute for a HLV with hydrogen upper stages. There is no cheap; space flight is inherently expensive.

The resources necessary to build an infrastructure for BEO-HSF are unavailable to private space. HLV’s sending packaged fissionables to the moon are completely out of reach of “entrepreneurs” claiming the flexible path will open the solar system to colonization. In fact, private space claiming they are the future of space exploration is a lie, a deception being used to acquire taxpayer support for space tourism. Forty years of space stations going in endless circles at very high altitude is a dead end. The space tourism industry wants this truth suppressed and portrays LEO stations as the cutting edge of “exploration.” The justification and source of funding for BEO-HSF is impact defense and survival colonies. The DOD is spending vast treasure on useless cold war toys that guarantee huge profits for the defense industry. Just as the new space movement is all about deception, so the the DOD is guilty of neglecting the most vital mission of the U.S. space program; safeguarding the earth and the human race.

This essay was originally posted last year and is now back with small changes. Enjoy.

The first decade of the 21st century ended with human space flight nowhere near to fulfilling the predictions made at the beginning of the space age. Not even close. Just as the Vietnam war robbed the space exploration budget, the end of the century found vast public funds, a truly mind boggling amount of treasure, spent on the cold war toys that have yielded guaranteed huge profits for the military industrial complex. Many of these incredibly expensive weapon systems do not work as advertised and very few of them have any application in the present war on terror. 911 did not stop the money flowing to new super fighter planes and missiles designed to shoot down other missiles. The promise of space was in truth sacrificed for the profits of the weapons industry. The expected moon bases and colonies on Mars were never funded and no human being has escaped earth orbit since the last Apollo mission. The underfunded space shuttle completely failed to provide the cheap lift and multi-mission capability that was never really possible to achieve. The showpiece International Space Station is little more than a 100 billion dollar collection of tin cans flying in endless circles.

Over a quarter century wasted and the human race seems in large part to have accepted the end of the space age. Despite a collection of old and new inferior lift vehicles incapable of accelerating a spacecraft to escape velocity, there is endless hype concerning the privatization of space and the bright future these for profit enterprises will bring about. The single point of failure in these schemes is the false miracle of fuel depots in space. These orbital gas stations will supposedly enable all the missions that previously could only be accomplished by a Heavy Lift Vehicles like the Saturn V. Cryo fuel storage and transfer is at this time a myth and has never even been attempted due to the extreme difficulties involved. It is simply a smoke screen to disguise defeat. We are not going anywhere if we stay on this path. The only hope for human space flight is the realization that deep space travel may at any time mean the difference between humankind surviving or disappearing forever. If this truth cannot unlock the vast resources required then we are sealing our collective fate. The Spaceship is the only insurance against extinction. Safeguarding the entire human race is the ultimate military mission, yet is completely ignored by our leaders and the defense industry. The inevitable asteroid or comet impact and the threat of a 100 percent lethal plague are with us right now. We as a species are playing a game of Russian roulette. We truly do not know when, but we know what is coming.

Everyone breathes a sigh of relief when it is explained that disastrous impacts only occur an average of once every several million years. The key fact never discussed is impacts are random. An impact could occur tomorrow, and again the next day, and it would just be a blip on a curved line representing the immensity of geologic time. No one would be left to exclaim, “WOW! What were the odds of that happening?” In the same way the threat of engineered pathogens is ignored, overlooked, or scoffed at in the hopes it will just go away. Just as there is little than can be done to stop seasonal flu, there is very little that could be done to stop such an airborne plague once it begins. Naturally evolved pathogens always leave a certain percentage of survivors but an engineered virus does not follow that rule. We are led to believe there is no defense, but we are being decieved and there is nothing further from the truth.

Spaceships can intercept impact threats and deflect them with nuclear devices. Spaceships can carry the people and equipment to construct permanent self-sustaining colonies in the outer solar system that will survive any plague on earth. The vital importance of building such craft is obvious. But Beyond Earth Orbit Human Space Flight (BEO-HSF) cannot be accomplished with a few expendable rockets. While complex weapons systems are easy money for industry because they do not have to work, Spaceships are hard money because they must work. Human beings must adjust their worldview concerning what is expensive and what is worth the expense. To understand the difficulty in building one, we must first define what a Spaceship actually is.

The entertainment and documentary film industry has conditioned the public to think of any craft that carries human beings beyond the atmosphere as a spaceship. A better definition would be a vehicle designed to carry human beings outside low earth orbit (LEO) while providing artificial gravity and radiation protection equal to earth. In addition, a ship makes crossings and changes course so a true ship of space would necessarily be able to travel to other bodies in the solar system. Travel to the moon does not qualify as a true crossing to another body due to the short distance compared to other destinations. Such a quick trip can be made without the gravity and shielding required for interplanetary flight. Another feature of lunar travel is the ability of chemical propulsion systems to accomplish these missions. Due to gravity and radiation solutions, a Spaceship traveling deep space has no propulsion option except nuclear energy. While travel in the inner solar system may use solar power for life support and other systems, nuclear propulsion is still required. Due to the lack of inner system destinations, nuclear power, as well as nuclear propulsion, must be included in defining the true Spaceship.

At this point in history the technology exists for only one form of nuclear propulsion; nuclear pulse (bomb propulsion). This fact is generally unknown to the public and is given little serious consideration in the popular press. Nuclear explosions pushing a ship through space does stretch the imagination, but no more than the idea of heavier than air flight did in the 19th century, even into the first years of the 20th. The difficulty in nuclear propulsion is not the engineering. Billions of dollars of classified weapons research would reveal exactly how to build such a system. It is not how, it is how to build and operate the system well away from the earth. Nuclear materials are an environmental hazard without equal. For this reason transporting and assembling the fuel and components of any nuclear power and propulsion system is the first obstacle. It is overcome by virtue of the previously mentioned body that can be reached with just chemical propulsion; the moon.

As with the Apollo missions of the last century, the moon can be reached on a direct trajectory with a Heavy Lift Vehicle. Such a vehicle, using human rated components, an escape tower, and specially packaged fissionables able to survive a launch failure or reentry, is the only practical method. While a worst case nuclear accident in earth orbit is unacceptable, the potential risk of contamination in lunar orbit is acceptable. Thus, the first problem in building a Spaceship is solved. Nuclear power components and the fuel for nuclear propulsion can be transported by HLV to the moon for assembly and preflight testing. The heaviest parts of the Spaceship are the massive pusher plate the nuclear pulse reacts against and the crew’ s massive radiation shield. The Earth Departure Stages (EDS) that boost the moon bound payloads out of earth orbit to their destinations, can be converted into the double hull of the Spaceship crew section that holds the liquid shielding, and also the structural members of the tower assembly used to absorb the shock of the pulse bomb detonations. The moon facilitates one of the two high mass necessities and can eventually supply the other.The first massive component, the radiation shield, can be supplied immediately in the form of water derived from lunar ice deposits to fill a double hull crew section. Until they are locally fabricated, the Spaceship pusher plates, or “pushers”, will have to come from earth by HLV in thin sections one at a time and stacked to form each ship’s heavy pusher.

The HLV at launch with a wide thin disc mounted at the nose and with side mounted SRB’s will be vaguely familiar to many science fiction fans. There is some resemblance to the starship Enterprise. How many such discs will have to be launched and later stacked to build an all up pusher remains to be seen. Eventually monolithic pushers can be manufactured from lunar materials. Until that time the pushers will have to come from earth in slices with multiple HLV missions. Considering the mass and energy involved, the schemes proposing human space flight by way of smaller cheaper rockets and “gas stations is space” are laughable. There is no cheap; space flight is inherently expensive.

A shock absorbing tower structure mounting a massively shielded crew section coupled to a nuclear reactor and bomb storage section, a massive pusher, and a tether system to generate artificial gravity complete the Spaceship. Using the hundreds of tons of water making up the radiation shield for growing bio-engineered organisms can sustain a closed loop life support system with an endurance of several years. A bomb propelled ship can attain velocities far above those possible with chemical propulsion and enable expeditions to the moons of the outer planets. The slug of matter that is superheated by the bomb and converted into the plasma that actually pushes the Spaceship can be obtained in situ from those distant moons in the outer system. By carrying a percentage of bombs without the mass of plasma slugs, speed and range is extended. This method of extending range was proposed in the original Project Orion. Spaceships can also transport thorium reactors, with fuel derived from lunar thorium ore, to these distant moons enabling permanent colonies to be established. Over 100 bodies in the outer system are large enough to anchor colonies.

During powered flight, when the reactor is shut down and both sections of the ship are joined, a tower structure would be used to decellerate the composite section during bomb pulses. Projecting far ahead of the pusher at the end of the tower, the composit ship section at the front would stroke backward like a descending elevator toward the plate. This system would lower the acceleration forces on the crew and equipment to the level of an aircraft carrier jet catapult launch. When coasting, the Spaceship would spit in half and reel out the engineering section and crew section opposite each other on long tethers to generate artificial gravity by spinning both sections around the pusher as the axis. The spaceship’s nulcear reactor can then be run without the need for very heavy shielding due to the several thousand feet of separation from the crew section. When the tethers are deployed for cruising, one half of the tower would fold against the pusher and reel out the tether with the crew section, and the other half of the tower would do the same in the opposite direction with the nuclear section of the ship. seperater lengths of tether payed out from the split tower can be adjusted to balance the two spinning masses. During coast the crew would look out through viewports separated by14 feet of water and view a slowly rotating star field.

Science fiction has instilled the idea that Spaceships and large scale space exploration is centuries away. In fact, we are perfectly capable of colonizing the solar system with present technology. With a single advance in medical technology- the ability to freeze human beings and then successfully revive them- we would also be immediately capable of travel to the stars. Such a cryopreservation procedure violates no laws of physics and is already used on a smaller scale with sperm and ovum. With this in mind another existential threat to humanity must be appreciated at –the risk of the writer being considered paranoid or delusional. Physicist Stephen Hawking has warned of a possible threat from alien civilizations. Indeed, if we lack only a single technological advance to be capable of star flight, alien civilizations could have already made this advance and embarked on missions of colonization to other stars. The danger is that our world was selected for alien colonization many centuries ago. Unlike the dramatic combat found in science fiction novels and movies, the most likely invasion would take the form of comets steered toward earth as a method of sterilization. Just as we are capable of diverting impact threats away from earth, this capability also entails arranged impacts. An advance alien force would probably sanitize the earth of most indigenious life and plant invasive micro organisms from their native ecosystem. When the alien colonists arrive centuries in the future and are revived, they would find a world already adapted to their biology and ready for introduction of flora, fauna, and settlers. This conversion process may be common in our galaxy. The millions of planets now confirmed to exist only increase the likelihood.

From discussing building the first Spaceships and off-world base on the moon, to the subject of preparing for alien invasion seems a fantastical and inappropriate leap. It is no more incredible than the other unbelievable features of the universe- from super massive black holes to past ages on our own world that saw the end of the dinosaurs.

http://www.sciencedaily.com/releases/2012/08/120823150403.htm

In a recent comment John Hunt mentioned the most probable solution to the Fermi Paradox and as more and more planets are discovered this solution becomes ever more troubling.

Whether civilizations are rare due to comet and asteroid impacts- as Ed Lu recently stated was a possibility- or they self-destruct due to technology, the greater danger is found in human complacency and greed. We have the ability right now, perhaps as hundreds or even thousands of other civilizations had, to defend ourselves from the external and internal threats to our survival. Somewhat like salmon swimming upstream, it may not be life itself that is rare- it may be intelligent life that survives for any length of time that is almost non-existent.

The answer is in space. The resources necessary to leave Earth and establish off world colonies are available- but there is no cheap. Space travel is inherently expensive. Yet we spend billions on geopolitical power games threatening other human beings with supersonic fighters and robot missile assassins. The technology to defend civilization as a whole from the plausible threat represented by this “Great Silence” will cost us no more than what we spend on expensive projects like vertical take-off stealth fighters and hyper-velocity naval rail guns. But it is not the easy money of weapons; it is the hard money of vehicles and systems that must work far from Earth that is unattractive to the corporate profit motive.

Atomic spaceships capable of transporting colonists and intercepting impact threats are the prerequisites to safeguarding our species.

Andrew Skolnick drew my attention to this great article by John Eades, a CERN senior scientist, about antimatter engines and weapons.

Antimatter Pseudoscience by John Eades in the Skeptical Inquirer http://www.csicop.org/si/show/antimatter_pseudoscience/

We, Andrew Skolnick and I, did the calculations and showed that it would cost 42,876x our 2011 World GDP to use antimatter as a propulsion fuel to get to Alpha Centauri!!

John Eades goes one better and shows that it is not technologically feasible, ever. His article is facinating reading, and shows that we cannot base our hopes to leave Earth on antimatter drives.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative

http://www.kcet.org/news/rewire/solar/concentrating-solar/ni…tinue.html

Cover the deserts in solar energy plants and use electric trains for our transportation infrastructure; the best future I can imagine. A favorite Einstein quote is “Not everything that can be counted counts, and not everything that counts can be counted.” Perhaps the number we are counting that counts is the amount of energy it would require for a future population of 10 billion people to live like we do in the west.

I was surprised to find a statement to the effect that only one method of generating this energy is practical; solar energy beamed to Earth from the Moon; from wiki–

“In short, Criswell believes that lunar-solar energy is the only viable option for generating the massive amounts of electrical power that would be needed to raise the standard of living in third-world nations to that of first-world nations.

He once said, from the University of Houston, that “We are already well beyond what the biosphere can provide. We have to go outside to get something else.” http://en.wikipedia.org/wiki/David_Criswell

If that is the only way then that is the only way. We had better start asking ourselves what the cost of denial is going to be.

http://www.shimz.co.jp/english/theme/dream/lunaring.html

http://www.newsdaily.com/stories/bre87f15x-us-california-gmo/

Filthy Lucre will certainly destroy us all if we cannot even pass a law that makes food companies tell us what they are feeding us.

http://www.sciencedaily.com/releases/2012/08/120814121119.htm

Just as the tax incentives that expired after the Carter Administration destroyed a whole new industry, and just as bio fuels recently turned into the bio bomb, wind energy is poised to crash.

We just will not stop destroying our future.

A coal fired power plant runs for years with very little maintenance, without being shut down or started up- the boilers make steam and turn the turbines and we cannot see the stars because we might as well burn those city lights all night long. It is impossible to compete with black rock you dig out of the ground and put on a train and turn into dependable cheap electricity.

Bio fuel was a tax scam and wind energy will never be cheap, but if Germany is making solar work then by gosh we should be able to.

The only way we will stop burning is if it is legislated against. That’s it. Enough sunlight hits Nevada to power the whole country; that is a fact. We could cover the Mojave in solar thermal power towers and mirror fields for what we pay the military to keep the middle east oil flowing; that is a fact.

But we would have to change our lifestyle. The big corporations see no profit in this at all. So we watch dancing with the stars and drive our cars and wonder why everything get’s worse every year. It is no secret that they will take us for every cent they can until it is all gone and America becomes another third world slum.

The biggest challenge to the ‘ecosystem’ of world economics that keeps society ticking over is how to overcome our inability to regulate a sustainable economic model. In Europe at present we are undergoing the difficult measures in setting about rules of austerity to ensure that government borrowing never gets as out of hand as it has done on our watch. I post on this topic now as it is topical to me — back home here in my native Ireland we are voting on a referendum this week to ensure we no longer borrow from our children to fuel indulgences today — a referendum on rationality and responsibility.

The topical of austerity reminds me of an opinion I blogged on a crisis in the Obama administration last August on national debt in the light of striking comments from foreign figureheads amid the storm from the ‘Tea Party Taliban’. I share with you for to see if anyone cares to comment on an operandi of living like parasites off the global economy:

Living Like Parasites Off The Global Economy, originally written 3 Aug 2011:

With the US in turmoil over its national debt, and held to ransom by a ‘Tea Party Taliban’, last week China publicly mocked American democracy. Yesterday, the world witnessed the humbling of America after a trillion-dollar deal marked the end of an era for the US. The US now faces a shift in its relations with creditor nations, and it was not all too surprising to hear Vladimir Putin, the Russian Prime Minister, yesterday accusing Americans of living “like parasites off the global economy”. If America had defaulted on its international debt obligations, that is exactly what it would be. While America continues to service it’s debt, it is quite the opposite — for now at least- as is perpetually paying interest to its creditors.

However, one needs to look at the bigger picture. In 1980, the size of US debt was $1 Trillion. It stabilized in 1995 at $5 Trillion until 9/11 after which the gross military spending on combating dubious wars saw it rise to where it is now — $15 Trillion and rising rapidly out of control. An 11th hour rescue deal that was far less than the Obama administration wished for sees its debt ceiling rise further, though perhaps finally brought to account.

The US debt is the largest in the world. Purchasers of Treasury bills still reasonably expect the US economy to recover enough to pay them back and foreign investors like China and Japan, the US is such a large customer it is allowed to run a huge tab so it will keep buying exports. The debt is 95% of GDP, and interest alone on the debt was $414 billion in Fiscal Year 2010. One wonders when the US is going to pay it all back. It is reasonable to anticipate that sooner or later, an 11th hour rescue package, like the one negotiated with The Tea Party Taliban this week, will not be there to save the US from defaulting on its debt, at which point the US will have proven itself to be a parasite on the world stage — one that borrows and declines to pay you back.

The alternative scenario paints a parasitic picture of only a different hue — if the US government and similars do eventually pay back all their borrowings in recent decades via raised taxes and spending cuts, we are in a situation where ones children have to collect the invoice for the excessive indulgences of today. A falsis principiis proficisci…

On the cusp of graduation, I’ve had two major realizations in college.

One: most of America’s worst economic crises have been a result of financial obscurity. The first major crash in my lifetime was in the tech bubble of the early 2000s, where Wall Street traders were overrating the quality of Internet stocks. Once the broader market realized this, the values of many tech companies were obliterated. Millions of investors exposed to this sector lost their entire investments because they were unaware of these misrepresentations. In the most last recession, where lenders were underrating the riskiness of homeowners and financial institutions were securitizing riskier-than-advertised mortgages, millions of investors lost their entire investments yet again because they were unaware of further misrepresentations.

Two: economic history repeats itself, even if as a society, we might be aware of this pattern. Taking these two market crises as an example of this bleak fact about our species, it seems that we’ll always have the shortest of memories. In this case, history repeated rather quickly – twice in the span of a decade. Is it possible that people are cognizant of a recurring mistake before it happens, even if it’s happened before in their lifetimes? Most likely not, if the last recession is any example. A significant number of real estate professionals, banking gurus, and regulators were responsible for inflating a price bubble in the housing market, even though some fraction should have been economically conscious enough to understand the problems that would eventually arise.

The question then remains: is there a way to solve both of these problems, assuming the best of all possible worlds? Yes. Imagine a place where peoples’ understandings of basic economics and financial practices was commonplace, where a homeowner and a lender had an equal comprehension of a mortgage, where a hard-working breadwinner knew the dangers of payday loans, and where a child could sit side-by-side with his or her parents while overseeing family finances. All of these possibilities – and more – can come into fruition if we as individuals place a greater emphasis on financial awareness. Note: I don’t say “financial learning” because all of these concepts are innate to us, though hidden by verbiage and stigma. Whether we like it or not, if our career is in finance or not, we must come to terms with the economic world that surrounds us.

If we are lucky, a societal “financial flowering” may just reduce the severity of future crises, and will definitely place more dollars in the pockets of our grandchildren. Just think, if we are able to teach future generations about the dangers of debt, or the linkages between well-being and sound investing practices, our world will be a better place. For lack of a better cliché, this is not rocket-science, which is why it is actually possible. I work for WealthLift, a company that teaches novice investors how to evaluate and trade stocks, while providing them with educational lessons about topics such as hedge funds, the Federal Reserve, and retirement planning. I hope that more people will try to make a difference in the realm of financial clarity, because it is an issue that affects us all.

At the end of the day, our lives are a factor of the number of Greenbacks we hold, whether we like it or not. I want to raise my children in a culture that has a better grasp on these issues, not for wealth or power, but for peace.

RMS <em>Titanic</em> Sails
What’s to worry? RMS Titanic departs Southampton.

This year marks the 100th anniversary of the Titanic disaster in 1912. What better time to think about lifeboats?

One way to start a discussion is with some vintage entertainment. On the centenary weekend of the wreck of the mega-liner, our local movie palace near the Hudson River waterfront ran a triple bill of classic films about maritime disasters: A Night to Remember, Lifeboat, and The Poseidon Adventure. Each one highlights an aspect of the lifeboat problem. They’re useful analogies for thinking about the existential risks of booking a passage on spaceship Earth.

Can’t happen…

A Night to Remember frames the basic social priorities: Should we have lifeboats and who are they for? Just anybody?? When William McQuitty produced his famous 1958 docudrama of the Titanic’s last hours, the answers were blindingly obvious – of course we need lifeboats! They’re for everyone and there should be enough! Where is that moral certainty these days? And whatever happened to the universal technological optimism of 1912? For example, certain Seasteaders guarantee your rights – and presumably a lifeboat seat – only as long as your dues are paid. Libertarians privatize public goods, run them into the ground, squeeze out every dime, move the money offshore, and then dictate budget priorities in their own interest. Malthusians handle the menu planning. And the ship’s captain just might be the neo-feudal Prince Philip, plotting our course back to his Deep Green Eleventh Century.

Tallulah Bankhead in <em>Lifeboat</em>
Think Mink and Don’t Sink: Talulah Bankhead in Hitchcock’s Lifeboat.

Alfred Hitchcock’s Lifeboat deals with the problems of being in one. For a very long time – unlike the lucky stiffs on the Titanic, who were picked up in 2 hours. Specifically, it’s about a motley group of passengers thrown together in an open boat with short provisions, no compass, and no certain course. And, oh yes, the skipper is their mortal enemy: The lifeboat is helmed by the U-boat commander who torpedoed their ship. He overawes them with seafaring expertise and boundless energy (thanks to the speed pills in his secret stash) and then lulls them by singing sentimental German lieder. At night, the captain solves his problems of supply and authority by culling the injured passengers while everyone’s asleep. He tells the survivors they’re going to Bermuda. They’re actually headed for a rendezvous with his supply ship – and from there the slow boat to Buchenwald. The point of Lifeboat is simple: What can you do in your life and environment so you never, ever end up in one?

What’s wrong with this picture?

Risk avoidance is the moral of The Poseidon Adventure. A glorious old ocean liner, the Poseidon, is acquired by new owners who plan to scrap it. But these clever operators maximize shareholder value by billing the ship’s final voyage as a New Year’s cruise to Greece. They take on every paying passenger they can find, barter with a band to get free entertainment, and drive the underloaded ship hard and fast into the stormy winter Mediterranean over the protests of the captain and seasick travelers. At this point an undersea earthquake triggers a 90-foot tsunami, and despite ample warnings this monster wave broadsides the top-heavy liner at midnight, during the New Year’s party. First the ball drops. Then the other shoe drops. The result is the ultimate “Bottoms Up!”

And the takeaway of The Poseidon Adventure applies to all of the films and to life in general, not to mention the next few generations on the planet. As David McCollough’s famously concluded in The Johnstown Flood, it can be a fatal assumption ‘that the people who were responsible for your safety will act responsibly.’

You can have a ripping good time watching these old movies. And as futurists, sociologists, planners, catastrophists, humanists or transhumanists, you can conjure with them, too. Icebergs and U-boats have ceased to menace – of cruise ships, I say nothing.

But the same principles of egalitarianism, legitimacy, non-beligerence and prudential planning apply to Earth-crossing asteroids, CERN’s operations and program, Nano-Bio-Info-Cogno manipulations, monetary policy and international finance, and NATO deployments present and future.

Or do they? And if they do, who says so?

Ship beautiful — the Aquitania on her way.

CC BY-NC-ND Clark Matthews and The Lifeboat Foundation

Creative Commons License
Earth’s Titanic Challenges by Clark Matthews is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
Permissions beyond the scope of this license may be available at https://lifeboat.com.