Toggle light / dark theme

What is the origin of fast radio bursts (FRBs) and what can this teach us about the galaxies where they reside? This is what a recent study published in Nature hopes to address as a team of researchers investigated how FRB signals that originate from magnetars could reside in galaxies outside the Milky Way with the goal of better understanding the processes responsible for producing FRBs, and specifically the galaxies they inhabit. Since FRBs and magnetars remain some of the most mysterious objects in the universe, this study holds the potential to help researchers gain greater insight into not only their formation and evolution, but also how this bodes for finding life beyond Earth.

“The immense power output of magnetars makes them some of the most fascinating and extreme objects in the universe,” said Kritti Sharma, who is a PhD Candidate at Caltech and lead author of the study. “Very little is known about what causes the formation of magnetars upon the death of massive stars. Our work helps to answer this question.”

For the study, the researchers used the Deep Synoptic Array (DSA-110) to analyze 30 galaxies where FRBs have been confirmed to exist with the goal of ascertaining comparing the properties of each galaxy to the FRBs they produce. While researchers have long hypothesized that FRBs are produced in galaxies of all sizes that are actively forming stars, the researchers discovered a higher number of FRBs were produced in larger galaxies as opposed to smaller galaxies. They concluded that this was likely due to larger galaxies being more metal-rich, also known as metallicity, whereas smaller galaxies tend to have smaller metallicities.

A new statistical analysis by researchers at the University of Arizona suggests that evolved in animals around 500 million years ago, long before the evolution of colorful fruits and flowers, which started sprouting 200 to 350 million years ago. The researchers focused on what they term “conspicuous colors”—basically, the ones kids are likeliest to select in a 16 pack of Crayolas—red, orange, yellow, blue and purple.

Around 150 million years ago, presumably to capitalize on the well-established prevalence of color vision, species began evolving warning coloration. And 50 million years later, there was an evolutionary explosion of both warning and sexual coloration. Although the reasons behind this evolutionary burst are still unclear, the researchers identified three warning signal animal vectors behind it: ray-finned fishes, birds and lizards.

Additionally, warning coloration is much more widespread among species than sexual coloration, likely because colorful animals do not themselves need to have color vision to signal the danger they pose to other, color-sensitive species. Sexual color signals, on the other hand, are confined to vertebrate and arthropod species that have well-developed color vision.

The brain is a marvel of efficiency, honed by thousands of years of evolution so it can adapt and thrive in a rapidly changing world. Yet, despite decades of research, the mystery of how the brain achieves this has remained elusive.

Our new research, published in the journal Cell, reveals how neurons – the cells responsible for your childhood memories, thoughts and emotions – coordinate their activity.

It’s a bit like being a worker in a high-performing business. Balancing individual skills with teamwork is key to success, but how do you achieve the balance?

White holes, the theoretical opposites of black holes, could expel matter instead of absorbing it. Unlike black holes, whose event horizon traps everything, white holes would prevent anything from entering. While no white holes have been observed, they remain an intriguing mathematical possibility. Some astrophysicists have speculated that gamma ray bursts could be linked to white holes, and even the Big Bang might be explained by a massive white hole. Although the second law of thermodynamics presents a challenge, studying these singularities could revolutionize our understanding of space-time and cosmic evolution.

After reading the article, Harry gained more than 724 upvotes with this comment: “It amazes me how Einstein’s theory and equations branched off into so many other theoretical phenomena. Legend legacy.”

Black holes may well be the most intriguing enigmas in the Universe. Believed to be the collapsed remnants of dead stars, these objects are renowned for one characteristic in particular – anything that goes in never comes out.

Using data from NASA’s JWST and Chandra X-ray Observatory, a team of U.S. National Science Foundation NOIRLab astronomers have discovered a supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang that is consuming matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s ‘feast’ could help astronomers explain how supermassive black holes grew so quickly in the early Universe.

Supermassive black holes exist at the center of most galaxies, and modern telescopes continue to observe them at surprisingly early times in the Universe’s evolution. It’s difficult to understand how these black holes were able to grow so big so rapidly. But with the discovery of a low-mass supermassive black hole feasting on material at an extreme rate, seen just 1.5 billion years after the Big Bang, astronomers now have valuable new insights into the mechanisms of rapidly growing black holes in the early Universe.

LID-568 was discovered by a cross-institutional team of astronomers led by International Gemini Observatory/NSF NOIRLab astronomer Hyewon Suh. They used the James Webb Space Telescope (JWST) to observe a sample of galaxies from the Chandra X-ray Observatory’s COSMOS legacy survey. This population of galaxies is very bright in the X-ray part of the spectrum, but are invisible in the optical and near-infrared. JWST’s unique infrared sensitivity allows it to detect these faint counterpart emissions.

A new 450-million-year-old arthropod fossil, Lomankus edgecombei, has been uncovered in New York, revealing crucial evolutionary shifts in appendage function from predation to environmental sensing among ancient arthropods. A new 450-million-year-old fossil arthropod, preserved in 3D by iron py.

Discover the pivotal role of a single type of cell that sparked the incredible evolution from simple sea creatures of 800 million years ago to the diverse array of complex animals we see today.

On this episode, neuroscientist and author Robert Sapolsky joins Nate to discuss the structure of the human brain and its implication on behavior and our ability to change. Dr. Sapolsky also unpacks how the innate quality of a biological organism shaped by evolution and the surrounding environment — meaning all animals, including humans — leads him to believe that there is no such thing as free will, at least how we think about it today. How do our past and present hormone levels, hunger, stress, and more affect the way we make decisions? What implications does this have in a future headed towards lower energy and resource availability? How can our species manage the mismatch of our evolutionary biology with our modern day challenges — and navigate through a ‘determined’ future?

About Robert Sapolsky:

Robert Sapolsky is professor of biology and neurology at Stanford University and a research associate with the Institute of Primate Research at the National Museum of Kenya. Over the past thirty years, he has divided his time between the lab, where he studies how stress hormones can damage the brain, and in East Africa, where he studies the impact of chronic stress on the health of baboons. Sapolsky is author of several books, including Why Zebras Don’t Get Ulcers, A Primate’s Memoir, Behave: The Biology of Humans at Our Best and Worst, and his newest book coming out in October, Determined: Life Without Free Will. He lives with his family in San Francisco.

For Show Notes and More visit: https://www.thegreatsimplification.co

Evolution has always been seen as a complex, random, and unpredictable process, shaping life on Earth in ways we could hardly anticipate.

But what if there’s more order to it than chaos? That’s exactly what a team of scientists is suggesting in a new study.

This research, led by Professor James McInerney and Dr. Alan Beavan from the School of Life Sciences at the University of Nottingham, hints that evolution might not be as random as we’ve long thought.