Toggle light / dark theme

A new technology developed at Tel Aviv University makes it possible to destroy cancerous tumors in a targeted manner, via a combination of ultrasound and the injection of nanobubbles into the bloodstream. According to the research team, unlike invasive treatment methods or the injection of microbubbles into the tumor itself, this latest technology enables the destruction of the tumor in a non-invasive manner.

The study was conducted under the leadership of doctoral student Mike Bismuth from the lab of Dr. Tali Ilovitsh at Tel Aviv University’s Department of Biomedical Engineering, in collaboration with Dr. Dov Hershkovitz of the Department of Pathology. Prof. Agata Exner from Case Western Reserve University in Cleveland also participated in the study. The study was published in the journal Nanoscale.

Dr. Tali Ilovitsh says that their “new technology makes it possible, in a relatively simple way, to inject nanobubbles into the bloodstream, which then congregate in the area of the cancerous . After that, using a low-frequency ultrasound, we explode the nanobubbles, and thereby the tumor.”

Asphaltenes, a byproduct of crude oil production, are a waste material with potential. Rice University scientists are determined to find it by converting the carbon-rich resource into useful graphene.

Muhammad Rahman, an assistant research professor of materials science and nanoengineering, is employing Rice’s unique flash Joule heating process to convert asphaltenes instantly into turbostratic (loosely aligned) graphene and mix it into composites for thermal, anti-corrosion and 3D-printing applications.

The process makes good use of material otherwise burned for reuse as fuel or discarded into tailing ponds and landfills. Using at least some of the world’s reserve of more than 1 trillion barrels of as a feedstock for graphene would be good for the environment as well.

face_with_colon_three circa 2018.


Meagan Moore, a Biological and Agricultural Engineering student from Louisiana State University (LSU) has 3D printed a full-size model of the human body for use in radiotherapy.

Such models used in radiotherapy mimic the human tissue, and in medical terms are known as imaging phantoms or phantoms. They are used in radiotherapy to estimate the amount of dose delivery and distribution. A customized phantom of a patient can make the whole process more precise.

3D printing and cancer research

As has been previously reported, 3D printing is being explored by researchers for use in cancer treatment. Earlier this year, Adaptiiv Medical Technologies’ 3D printed bolus was approved for radiation therapy.

Guarding Against Future Global Biological Risks — Dr. Margaret “Peggy” Hamburg, MD — Chair Nuclear Threat Initiative, bio Advisory Group; Commissioner, Bipartisan Commission on Biodefense; former Commissioner, U.S. Food and Drug Administration (FDA)


Dr. Margaret “Peggy” Hamburg, MD is an internationally recognized leader in public health and medicine, who currently serves as chair of the Nuclear Threat Initiative’s (NTI) bio Advisory Group (https://www.nti.org/about/people/margaret-hamburg-md/), where she has also served as founding vice president and senior scientist. She also currently holds a role as Commissioner on the Bipartisan Commission on Biodefense (https://biodefensecommission.org/teams/margaret-a-hamburg/).

Dr. Hamburg previously served as foreign secretary of the National Academy of Medicine and is a former Commissioner of the U.S. Food and Drug Administration (FDA), having served for almost six years where she was well known for advancing regulatory science, modernizing regulatory pathways, and globalizing the agency. Previous government positions include Assistant Secretary for Planning and Evaluation, U.S. Department of Health and Human Services, Health Commissioner for New York City, and Assistant Director of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

In her role, as Foreign Secretary of the National Academy of Medicine, the health arm of the National Academy of Sciences, Engineering and Medicine, Dr. Hamburg served as senior advisor on international matters and was the liaison with other Academies of Medicine around the world. She is an elected member of the Council on Foreign Relations and the National Academy of Medicine.

Dr. Hamburg currently sits on the boards of the Commonwealth Fund, the Simons Foundation, the Urban Institute, the Global Alliance for Vaccines and Immunization, the Parker Institute for Cancer Immunotherapy and the American Museum of Natural History. She is chair of the Joint Coordinating Group for the Coalition for Epidemic Preparedness and Innovation, and a member of the Harvard University Global Advisory Council, the Global Health Scientific Advisory Committee for the Gates Foundation, the Harvard Medical School Board of Fellows, and the World Dementia Council.

Visit our sponsor, Brilliant: https://brilliant.org/IsaacArthur/
All of our civilization exists only a thin layer of Earth’s surface, and our deepest mines barely scratch our planet. We often talk about finding new mineral resources on other worlds or asteroids in the future, but are we ignore a treasure beneath our feet, and what other technologies and engineering might we utilize in Earth’s depths?

Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
SFIA Merchandise available: https://www.signil.com/sfia/

Social Media:
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version: https://soundcloud.com/isaac-arthur-148927746/accessing-earths-core.
Episode’s Narration-only version: https://soundcloud.com/isaac-arthur-148927746/accessing-eart…ation-only.

Credits:
Accessing Earth’s Core.
Episode 216, Season 5 E50

Written by:

Mental health practitioners and meditation gurus have long credited intentional breathing with the ability to induce inner calm, but scientists do not fully understand how the brain is involved in the process. Using functional magnetic resonance imaging (fMRI) and electrophysiology, researchers in the Penn State College of Engineering identified a potential link between respiration and neural activity changes in rats.

Their results were made available online ahead of publication in eLife. The researchers used simultaneous multi-modal techniques to clear the noise typically associated with brain imaging and pinpoint where breathing regulated .

“There are roughly a million papers published on fMRI—a non-invasive imaging technique that allows researchers to examine in real time,” said Nanyin Zhang, founding director of the Penn State Center for Neurotechnology in Mental Health Research and professor of biomedical engineering.