Toggle light / dark theme

The long-promised more affordable Tesla electric car might debut alongside an automated robotaxi.

Tesla is reportedly preparing to build a $25,000 electric car built on the company’s next-generation engineering platform. Axios.

The $25,000 car reportedly has a futuristic design like the long-delayed Cybertruck — the angular pickup truck that Tesla first revealed in 2019. The Cybertruck will supposedly begin production this year, with production-at-scale beginning in 2024.


Who knows when we’ll actually see a $25,000 Tesla.

Osteoarthritis (OA) is a prevalent global health concern, posing a significant and increasing public health challenge worldwide. Recently, biomaterials have emerged as a highly promising strategy for OA therapy due to their exceptional physicochemical properties and capacity to regulate pathological processes. However, there is an urgent need for a deeper understanding of the potential therapeutic applications of these biomaterials in the clinical management of diseases, particularly in the treatment of OA. In this comprehensive review, we present an extensive discussion of the current status and future prospects concerning biomaterials for OA… More.


Herein, in this review, we summarize the advanced strategies developed for enhancing OA therapy based on the biomaterials. We conducted a comprehensive literature search using relevant databases such as PubMed, Scopus, and Web of Science. The search was focused on peer-reviewed articles and research papers published within the last ten years (from 2013 to 2023). We utilized specific keywords related to biomaterials”, biomaterials” and “osteoarthritis therapy” to retrieve relevant studies. First, we provide an overview of the pathophysiology of OA and the limitations of current treatment options. Second, we explore the various types of biomaterials which have been used for OA therapy, including nanoparticles, nanofibers, and nanocomposites. Third, we highlight the advantages and challenges associated with the use of biomaterials in OA therapy, such as toxicity, biodegradation, and regulatory issues. Finally, advanced biomaterials-based OA therapies with their potential for clinical translation and emerging biomaterials directions for OA therapy are discussed.

Characteristics of Biomaterials

Nanotechnology-boosted biomaterials have attracted considerable attention in recent years as promising candidates for revolutionizing the field of therapeutics.12,13 These materials combine the unique properties of nanotechnology with the versatility and biocompatibility of biomaterials, offering numerous advantages over existing therapeutic approaches. Nanotechnology enables the precise engineering of biomaterials at the nanoscale, allowing for the encapsulation and controlled release of therapeutic agents, such as drugs and growth factors.14–17 This feature facilitates targeted and sustained drug delivery to specific sites within the body, reducing systemic side effects and enhancing treatment efficacy. In the context of OA, this targeted drug delivery can be utilized to deliver anti-inflammatory agents or disease-modifying drugs directly to affected joint tissues, promoting tissue repair and alleviating symptoms. Furthermore, biomaterials can be designed to mimic the native tissue environment, thereby enhancing their biocompatibility and reducing the risk of adverse reactions or immune responses.18 This characteristic is crucial for successful integration and long-term functionality of biomaterials in biomedical applications. Moreover, nanomaterials can facilitate tissue regeneration by stimulating cellular responses and promoting tissue growth.19 In the context of OA, biomaterials can assist in cartilage repair and regeneration, potentially slowing down disease progression and improving joint function.3 In addition, nanotechnology allows for the customization of biomaterials with a wide range of physical, chemical, and biological properties.13 This flexibility enables the development of multifunctional biomaterials that can simultaneously perform multiple tasks, such as drug delivery, imaging, and tissue regeneration. These advantages collectively contribute to their potential as innovative solutions in addressing various biomedical challenges and improving patient outcomes. In this section, we will discuss some of the key properties of biomaterials and their impact on OA treatment.

Graphene-based two-dimensional materials have recently emerged as a focus of scientific exploration due to their exceptional structural, mechanical, electrical, optical, and thermal properties. Among them, nanosheets based on graphene-oxide (GO), an oxidized derivative of graphene, with ultrathin and extra wide dimensions and oxygen-rich surfaces are quite promising.

Functional groups containing oxygen, such as carboxy and acidic hydroxy groups, generate dense negative charges, making GO nanosheets colloidally stable in water. As a result, they are valuable building blocks for next-generation functional soft materials.

In particular, thermoresponsive GO nanosheets have garnered much attention for their wide-ranging applications, from smart membranes and surfaces and recyclable systems to hydrogel actuators and biomedical platforms. However, the prevailing synthetic strategies for generating thermoresponsive behaviors entail modifying GO surfaces with thermoresponsive polymers such as poly (N-isopropylacrylamide). This process is complex and has potential limitations in subsequent functionalization efforts.

The Koenigsegg CC850 that debuted during August’s 2022 Monterey Car Week is a re-imagination of the Swedish firm’s first production car, and one of the highlights is a transmission like no other.

The CC850 uses a version of the 9-speed Light Speed Transmission from the Koenigsegg Jesko, but with a new Engage Shifter System (ESS) that makes the automatic transmission transform into a 6-speed manual (it still maintains the full automatic mode with nine gears, though). This Engineering Explained video provides a deep dive into Koenigsegg’s reinvented manual.


Koenigsegg’s latest hypercar features an automatic transmission that can transform into a manual complete with a clutch pedal.

Innovative technology that creates ultra-thin layers of human cells in tube-like structures could spur development of lifelike blood vessels and intestines in the lab.

The technique, known as RIFLE – rotational internal flow layer engineering – enables the construction of separate layers as delicate as one cell thick.

Such versatility is crucial to developing accurate human models of layered tubular tissue for use in research, offering an important alternative to animal models, experts say.

Layered hybrid perovskites show diverse physical properties and exceptional functionality; however, from a materials science viewpoint, the co-existence of lattice order and structural disorder can hinder the understanding of such materials. Lattice dynamics can be affected by dimensional engineering of inorganic frameworks and interactions with molecular moieties in a process that remains unknown.

To address this problem, Zhuquan Zhang and a team of scientists in chemistry and physics at the University of Pennsylvania, University of Texas, Austin, and the Massachusetts Institute of Technology, U.S., used a combination of spontaneous Raman scattering, terahertz spectroscopy and molecular dynamics simulations.

The research outcomes revealed how the in and out of equilibrium provided unexpected observables to differentiate single-and double-layered perovskites. The study is published in Science Advances.

Michael Levin discusses his 2022 paper “Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds” and his 2023 paper with Joshua Bongard, “There’s Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-scale Machines.” Links to papers flagged 🚩below.

Michael Levin is a scientist at Tufts University; his lab studies anatomical and behavioral decision-making at multiple scales of biological, artificial, and hybrid systems. He works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science.

❶ Polycomputing (observer-dependent)
1:59 Outlining the discussion.
3:50 My favorite comment from round 1 interview.
5:00 What is polycomputing?
8:50 An ode to Richard Feynman’s “There’s plenty of room at the bottom“
11:10 How/when was this discovered? Reductionism, causal power…
14:40 “It’s a view that steps away from prediction.“
16:20 From abstract: Polycomputing is the ability of the same substrate to simultaneously compute different things *but emphasis on the observer(s)*
17:05 What’s an example of polycomputing?
19:40 They took a different approach and actually did experiments with gene regulatory networks (GRNs)
23:18 Different observers extract different utility from the exact same system.
26:35 Spatial causal emergence graphs (determinism, degeneracy) | Erik Hoel’s micro/macro & effective information.
29:25 Inventiveness of John Conway’s Game of Life.

❷ Technological Approach to Mind Everywhere.
34:20 Tell me 3 things to determine intelligence (ball vs mouse on a hill)
39:50 Jeff Hawkins’ Thousand Brains Theory.
41:05 Agency is not binary, continuum of persuadability.
44:50 Where’s the bottom of agency? Plants & insects far off from 0
46:55 What is the absolute minimum amount of agency? Some degree of goal directed behavior & indeterminacy…
51:05 Life is a system good at scaling.
51:41 “To me, our world doesn’t have 0 agency anywhere.“
53:50 As an engineer, what can I take advantage of?
55:00 Surely you don’t think the weather has any intelligence to it…

❸ Attractor Landscapes.
58:35 Homeostatic loops, morphological spaces, attractor landscapes.
1:00:35 “Of course we’re living in a simulation!“
1:06:45 Attractor landscapes, topography, anatomical morphous space (D’Arcy Thompson)
1:12:28 Planaria stochastic, probability of head shape proportional to evolutionary distance between species.
1:15:15 What is the secret of the universe? Attractor landscapes, quantum fields, black holes.
1:19:05 We need a new system of ethics for unconventional minds.

🚾 Works Cited.

What happens in femtoseconds in nature can now be observed in milliseconds in the lab.

Scientists at the university of sydney.

The University of Sydney is a public research university located in Sydney, New South Wales, Australia. Founded in 1,850, it is the oldest university in Australia and is consistently ranked among the top universities in the world. The University of Sydney has a strong focus on research and offers a wide range of undergraduate and postgraduate programs across a variety of disciplines, including arts, business, engineering, law, medicine, and science.

#ted.
#wifi.
#internet.

What about 102,400 MBPS or 100GBPS. This is the speed of data transfer that you can achieve with LiFi Technology. With LiFi you can download 100 movies in just one second.
How’s this incredible internet speed possible?
It is possible with LED lights.
Watch this video till the end for a detailed introduction and truths of LiFi technology.

NEW HERE! TRY THIS STUFF
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Warp Drive Technology.
Eye as a Camera.
- https://www.youtube.com/watch?v=3Ur6HoAN3Vo.
Artificial Blood.
- https://www.youtube.com/watch?v=MX3LU0ClFPw&t=24s.
Wireless Electricity.
- https://www.youtube.com/watch?v=zGna5lTkBuc&t=65s.

📑 REFERENCES:
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
[1] The Technology of LiFi — E Ramadhani and G P Mahardika 2018 IOP Conf. Ser.: Mater. Sci. Eng. 325 012013
- https://bit.ly/3yMqSK9
[2] How Wireless Communication Works.
- https://bit.ly/3uUZZmq.
[3] Spectrum Crunch FAQ
- https://bit.ly/3AUCz47
[4] A Review Paper on LiFi Technology — Volume 5, Issue 23, International Journal of Engineering Research & Technology (IJERT)
- https://bit.ly/3yCAEP6
[5] LiFi Study Paper Approved.
- https://bit.ly/3uOHLCL
[6] LiFi vs WiFI
- https://bit.ly/3II3zWt.
[7] LiFi Pros and Cons.
- https://bit.ly/3oaPsQd.
[8] How Does LiFi Work?
- https://bit.ly/3o8t3De.
[9] What is LiFi?
- https://bit.ly/3aJam5P
[10] LiFi Wikipedia.
- https://bit.ly/3cmhe9u.

WHO ARE WE?

The bioactivity of most near-infrared II (NIRII) fluorophores are limited, thereby conflicting the achievement of strong fluorescence and high catalytic activities, due to a lack of free electrons in the method.

To overcome this challenge, Huizhen Ma and a research team in translational medicine, , physics, and materials at the Tianjin University China developed atomically precise gold clusters with strong near-infrared II fluorescence to show potent enzyme-mimetic activities by using atomic engineering, to form active copper single-atom sites.

These gold-copper clusters (Au21 Cu1) showed higher antioxidant nature with a 90-fold catalase-like and 3-fold higher superoxide dismutase-like activity compared to gold clusters alone. These clusters can be cleared through the to monitor cisplatin-induced within a 20–120-minute window to visualize the process in 3D via near-infrared light-sheet microscopy.