Toggle light / dark theme

Science Fiction has long contemplated the idea that alien life not based on carbon chemistry such as silicon might exist on distant and strange worlds, or might be made to exist advanced biological engineering. What would such life be like?

Start listening with a 30-day Audible trial and your first audiobook plus two Audible Originals are free. Visit http://www.audible.com/isaac or text \.

Researchers have developed a revolutionary biosensor using terahertz (THz) waves that can detect skin cancer with exceptional sensitivity, potentially paving the way for earlier and easier diagnoses. Published in IEEE Transactions on Biomedical Engineering, the study presents a significant advancement in early cancer detection, thanks to the collaboration of multidisciplinary teams from Queen Mary University of London and the University of Glasgow.

“Traditional methods for detecting skin cancer often involve expensive, time-consuming, CT, PET scans and invasive higher frequencies technologies,” explains Dr. Shohreh Nourinovin, Postdoctoral Research Associate at Queen Mary’s School of Electronic Engineering and Computer Science, and the study’s first author. “Our biosensor offers a non-invasive and highly efficient solution, leveraging the unique properties of THz waves—a type of radiation with lower energy than X-rays, thus safe for humans—to detect subtle changes in cell characteristics.”

The key innovation lies in the biosensor’s design. Featuring tiny, asymmetric resonators on a flexible substrate, it can detect subtle changes in the properties of cells. Unlike traditional methods that rely solely on , this device analyzes a combination of parameters, including , transmission magnitude, and a value called “full width at half maximum” (FWHM). This comprehensive approach provides a richer picture of the tissue, allowing for more accurate differentiation between healthy and cancerous cells and to measure malignancy degree of the tissue.

Inspired by the distribution of sunflower seeds, a group of scientists say they have developed a new city-pattern that ensures the best distribution of solar energy utilization “in low solar radiation countries.”

“Our new city-plan bears close resemblance to the distribution of seeds in sunflowers. This distribution ensures the best utilization of solar ,” says Dr. Ammar A. T. Alkhalidi, University of Sharjah’s Associate Professor of Sustainable and Renewable Energy Engineering.

Dr. Alkhalidi is the lead author of a new study titled “Sunflower-inspired urban city pattern to improve solar energy utilization in low solar radiation countries.” The study is published in journal Renewable Energy Focus.

Sept 22 2016.


Kurzweilai – How the properties of quarks and gluons can be used (in principle) to perform computation at the femtometer (10^−15 meter) scale.

An atom is about 10^−10 m in size.

The next smallest thing in nature is the nucleus, which is about 100,000 times smaller, i.e., 10^−15 m in size — a femtometer, or “fermi.” A nucleus is composed of protons and neutrons (i.e., “nucleons”), which we now know are composed of 3 quarks, which are bound (“glued”) together by massless (photon-like) particles called “gluons.”

Infleqtion is unique amongst quantum companies due its participation in so many different segments of the quantum computing industry including quantum components, quantum computers, quantum software, and quantum sensors. This strategy of a broad product portfolio provides both advantages and disadvantages for a company. The potential advantages include achieving synergy between different product areas with the neutral atom, atomic prism, photonic, software, and other technologies they have developed over the years. It also brings some diversity in the revenue streams because some products will provide early revenue while others might take a few years of development before they can make a revenue contribution. The potential disadvantages could include execution risks if the engineering resources are spread too thin. Also, there may be different sets of customers and sales channels for the different product lines which can increase the complexities of managing a sales force, calling on customers, and generating new business.

Nonetheless, Infleqtion has made some interesting announcements in the past few months. In 2023 alone, the Quantum Computing Report by GQI ran 17 different stories that included Infleqtion. This week they hosted a webinar to discuss their product roadmaps for sensors, software, and computing. The highlight of the webinar was the announcement of their quantum computing roadmap. In this article, we will cover their plans for quantum computing, but first we will start with the progress they talked about in quantum sensors and quantum software and then discuss quantum computing afterwards.

Infleqtion’s discussion of sensor products included ones named Tiqker, Sqywire, and eXaqt. Tiqker is a small form factor ultra-accurate clock intended for use in navigation, data centers, and communication networks. The company asserts that this clock is 100X more accurate than cesium beam atomic clocks and 100,000X more accurate than a crystal oscillator. In navigation applications it can be used in GPS-denied environments and in communication networks it can help increase bandwidth and reduce latencies due to the more precise clocking of the data signals. The company mentioned that they are partnering with a large company for use of Tiqker in data center applications and that Tiqker is now available for pre-order. Sqywire is an ultra-sensitive radio frequency (RF) receiver that senses RF signals with Rydberg state atom-based sensing. It can be used installed of a classical antenna and provides high sensitivity, lower power, and ultra-wide bandwidth in a form factor.

Editor’s note: This story is part of Meet a UChicagoan, a regular series focusing on the people who make UChicago a distinct intellectual community. Read about the others here.

Wide is the spectrum of scientific inquiry, ranging from the philosophical— What is information?—to the banal — Where did I put that Allen wrench?

For University of Chicago graduate student Chloe Washabaugh, there is joy to be found in all of it. A Ph.D. student in quantum engineering at the Pritzker School of Molecular Engineering, Washabaugh fashions molecules into tiny quantum information processors, designing them to sense, send or store data—whatever the need.