Toggle light / dark theme

Microsoft looks to tap quasiparticles to bring about a scalable quantum computer

Microsoft has been on a quest to build the holy grail of computers for over a decade, dumping tons of money into researching quantum computing and the company says they are ready to transition over to the engineering phase of their endeavor. At least that’s what MS executive Todd Holmdahl aims to accomplish by developing the hardware and software to do so.

Could We Marsiform Ourselves?

Changing another world to support Earth life is called terraforming. But maybe it’s a better idea to just change Earth life to live on other worlds.

Support us at: http://www.patreon.com/universetoday

More stories at: http://www.universetoday.com/

Follow us on Twitter: @universetoday
Follow us on Tumblr: http://universetoday.tumblr.com/

Like us on Facebook: https://www.facebook.com/universetoday

Google+ — https://plus.google.com/+universetoday/

Mixed Reality will be most important tech of 2017

Quantum will be the most important technology in 2017; as it will touch everything as well as change everything. Until we see a better integration of AR in Enterprise Apps, platforms, and published services; AR like VR will remain a niche market gadget.

I do know companies like Microsoft, SAP, and Oracle have been looking at ways to leverage AR in their enterprise platforms and services such as ERP and CRM as well as Big Data Analytics; however, to see the volume of sales needed to make VR or AR have staying power on a large scale; the vendors will need to it a pragmatic useful device on multiple fronts. And, yes it is great that we’re using VR and AR in healthcare, defense, engineering, and entertainment (includes gaming); we just need to make it an every consumer device that people canot live with out.


2016 has been a remarkable year that’s brought continued growth and awareness to the worlds of Augmented, Virtual and Mixed Reality. Set to become a $165 Billion dollar industry by 2020, there’s still a common question that lingers among many newcomers trying to understand this fast moving digital phenomena we are just beginning to watch evolve: What’s the difference between them and how will it impact the digital world as I currently know it?

Before we jump into the mind-blowing future Mixed Reality is set to usher in over the course of 2017, let’s first discuss the distinctions between Virtual and Augmented Reality. Their technologies are very similar but have some fundamental differences.

TNW is at CES 2017! Get the low-down on the latest and most insane tech being showcased in Las Vegas.

Tiny 3D printed biobots could dispense drug doses from inside your body

Samuel Sia, a professor of biomedical engineering at New York City’s Columbia University, has developed a 3D printed biobot that can be implanted in the body to release controlled doses of drugs. The amazing device can be controlled from outside the body using only magnets.

For patients who have been diagnosed with cancer, treatment options are often few and far between, and in many serious cases, starting an intense course of chemotherapy becomes a necessity rather than a choice. But despite being a powerful weapon against cancer, chemotherapy takes its toll on the body in a number of ways: chronic pain, nausea, fatigue, hair loss, and the chance of infertility are just some of the adverse effects that chemotherapy can present. Fortunately, scientists are working hard to develop more effective ways of delivering chemotherapy drugs, including a new 3D printing method that involves fabricating squishy, “clockwork” micromachines that deliver precise drug doses from within the body.

The Future Of Encryption

QC in the mainstream is definitely viable less than 7 yrs. and possible within 5 yrs. However, I have a friend who even believes we’re looking at 3 years.


Internet security, once considered to be strictly in the domain of the wonkiest tech experts, has become central to public discourse over the past year. Besides the attacks on the DNC, even tech savvy business like Snapchat, Oracle and Verizon Enterprise Solutions have had significant breaches in the last year.

For the most part, these attacks were preventable. Often, hackers use a technique called social engineering, to trick people into allowing them into a system. Other times, they exploit a vulnerability in software to give them access to confidential data. In most cases, more stringent procedures can prevent attacks.

However, there is a more serious crisis coming. In five to ten years, we are likely to see quantum computers that are so powerful that they are able to break even the strongest encryption in use today. That means that soon, even our most vital and well protected data will be at risk. So if you want to protect your businesses, you should start preparing now.

NASA Just Released Its Incredibly Cool Concept for Houses on Mars

NASA researchers have a lot of problems to work through if they want astronauts to one day set foot on Mars. One of the biggest hurdles is where these early pioneers will sleep and live, and after a day of brainstorming, engineers might have come up with a solution – a conceptual ‘ice home’ design.

Yup, NASA is looking into creating inflatable domes covered in ice for astronauts to live and work in, providing them with protection from extreme temperatures and high-energy radiation.

“After a day dedicated to identifying needs, goals, and constraints we rapidly assessed many crazy, out of the box ideas and finally converged on the current Ice Home design, which provides a sound engineering solution,” said senior systems engineer Kevin Vipavetz, from NASA’s Langley Research Centre in Virginia.

The Science and Engineering of Quantum Dot Lasers

Since their development in 1960, lasers have become an indispensable tool supporting our modern society, finding use in fields such as medicine, information, and industry. Thanks to their compact size and energy efficiency, semiconductor lasers are now one of the most important classes of laser, making possible a diverse range of applications. However, the threshold current of a typical semiconductor laser—the minimum electrical current required to induce lasing—increases with temperature. This is one of a number of disadvantages that can be overcome by using quantum dot lasers. Professor Yasuhiko Arakawa of the Institute of Industrial Science at the University of Tokyo has been researching quantum dot lasers for about 35 years, from their conception to commercialization.

An electron trapped in a microscopic box

Sunlight is composed of light of various colors. The property that determines the color of light is its wavelength, or in other words, the distance between two successive wave peaks or troughs. The location of the peaks and troughs in the waveform is known as its phase. As a laser emits light waves in a uniform phase at the same wavelength, the light can be transmitted as a beam over long distances at high intensity.

Bionic pancreas system manages blood sugar levels in patients with type 1 diabetes living at home

The bionic pancreas system developed by Boston University (BU) investigators proved better than either conventional or sensor-augmented insulin pump therapy at managing blood sugar levels in patients with type 1 diabetes living at home, with no restrictions, over 11 days. The report of a clinical trial led by a Massachusetts General Hospital (MGH) physician is receiving advance online publication in The Lancet.

“For study participants living at home without limitations on their activity and diet, the bionic pancreas successfully reduced average blood glucose, while at the same time decreasing the risk of hypoglycemia,” says Steven Russell, MD, PhD, of the MGH Diabetes Unit. “This system requires no information other than the patient’s body weight to start, so it will require much less time and effort by health care providers to initiate treatment. And since no carbohydrate counting is required, it significantly reduces the burden on patients associated with diabetes management.”

Developed by Edward Damiano, PhD, and Firas El-Khatib, PhD, of the BU Department of Biomedical Engineering, the bionic pancreas controls patients’ blood sugar with both insulin and glucagon, a hormone that increases glucose levels. After a 2010 clinical trial confirmed that the original version of the device could maintain near-normal blood sugar levels for more than 24 hours in adult patients, two follow-up trials — reported in a 2014 New England Journal of Medicine paper — showed that an updated version of the system successfully controlled blood sugar levels in adults and adolescents for five days. Another follow-up trial published in The Lancet Diabetes and Endocrinology in 2016 showed it could do the same for children as young as 6 years of age.

Q&A: Diamond in Quantum Applications

Oh; there is a LOT more to they syndiamond story as it relates to some of the additional hardware and communications technologies that we’re developing and planning for the future.


What are the unique properties of diamond that make it a supermaterial?

Diamond has long been known to have exceptional properties, largely resulting from the symmetry of the cubic lattice made of light carbon atoms connected by extremely strong bonds. These exceptional properties include thermal conductivity five times higher than that of copper and the widest optical transparency of any material extending from the UV to the RF part of the electromagnetic spectrum. Additionally, diamond also has some interesting chemical properties as it is extremely inert, though it can become a conductor by adding boron. In this manner, one could leverage synthetic diamond for use in electrochemical incineration where existing electrode materials have only a limited lifetime.

What are the traditional applications for synthetic diamond in engineering and electronics?

Historically diamond has been exploited mainly for its great hardness in mechanical applications. For example in modern cars more than 150 components are made using a variety of diamond tools. However in the past two decades there have been an increasing number of applications which utilize some of diamonds’ other superlative properties. For example, synthetic diamond is utilized in semiconductor applications for its heat spreading abilities. This trend is being driven by the increasing number of transistors on a chip which increases the thermal load and therefore runs the risk of device failure. Using diamond in this application not only means more transistors can run on a chip but it also extends device lifetime as they can run cooler. Synthetic diamond is also being used as a radiation detector. Element Six diamond is currently being used in the CERN Large Hadron Collider as part of its monitoring system.

/* */