Toggle light / dark theme

Samsung Electronics today announced it will be introducing the first DRAM memory modules in the industry designed with cutting-edge Extreme Ultraviolet Technology (EUV).

One of the world’s leading memory manufacturers, Samsung says that response to a million evaluation units of its first line of 10nm-class DDR4 DRAM modules has been positive and that it will soon begin processing orders for worldwide distribution.

EUV technology allows memory modules to be manufactured more accurately and more quickly. It speeds up the lithography process by reducing the number of repetitive steps and facilitates the production of complex chip patterns. It means greater performance accuracy and a shortened development time.

Apple’s latest iPad — the iPad Pro — is its most-powerful and comes with several first-time features. This is the first iPad with a a dual-camera, a trackpad, a Magic keyboard and LiDAR scanner. It is the most-powerful iPad Apple has made and is set to give tough competition to a lot of Windows-powered laptops. Here are 15 things you should know about the new iPad Pro:

This could used to emp laser missiles or other targets.


The electromagnetic pulses (EMPs) generated during the interaction of a focused 1.315-μm sub-nanosecond laser pulse with a solid hydrogen ribbon were measured. The strength and temporal characteristics of EMPs were found to be dependent on the target density. If a low density target is ionized during the interaction with the laser, and the plasma does not physically touch the target holder, the EMP is weaker in strength and shorter in time duration. It is shown that during the H2 target experiment, the EMP does not strongly affect the response of fast electronic devices. The measurements of the EMP were carried out by Rohde&Schwarz B-Probes, particularly sensitive in the frequency range from 30 MHz and 1 GHz. Numerical simulations of resonant frequencies of the target chamber used in the experiment at the Prague Asterix Laser System kJ-class laser facility elucidate the peaked structure of EMP frequency spectra in the GHz domain.

You don’t need a big laser to make laser-induced graphene (LIG). Scientists at Rice University, the University of Tennessee, Knoxville (UT Knoxville) and Oak Ridge National Laboratory (ORNL) are using a very small visible beam to burn the foamy form of carbon into microscopic patterns.


Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope. The reduced size of the conductive material may make it more useful for flexible electronics.

Raytheon and the US Navy have successfully fired a precision-guided munition that can be fired from a howitzer and zero in on a moving object. The recent test of the Excalibur S round not only demonstrated its ability to switch from GPS to laser guidance to find its target, but also that its electronics and sensors can withstand the shock of being fired out of a gun.

The Excalibur S is the latest variant of Raytheon’s Excalibur line of smart projectiles. Developed by Raytheon and BAE Systems Bofors, it uses the GPS technology from the Excalibur Ib, and combines it with a semi-active laser seeker that allows it to home in on moving land and maritime targets with a miss radius of under two meters (6.5 ft).

The Excalibur system is designed to work with a variety of artillery and can extend the range of a .52 caliber gun to over 50 km (31 mi) to hit or damage its target with the first round. When the Excalibur S is first fired, it uses GPS to make its initial target fix, then switches over to its laser sensor to home in on an outside targeting beam.