Toggle light / dark theme

Researchers have designed a battery that’s 90 percent more efficient than lithium-ion

Smartphones, laptops, and all manner of electronics have advanced by leaps in bounds over the past few decades, but an essential component of most of them — the battery, or more precisely the lithium-ion battery — hasn’t. The technological remnant of the mid-’90s has a tendency to degrade and isn’t particularly efficient, which is why scores of researchers have spent years pursuing alternatives. Until now, though, practical limitations — i.e., physical dimensions and mass manufacturing constraints — have permanently relegated many to laboratories. But a new design, a refinement of so-called lithium-air design by scientists at the University of Cambridge, looks to be one of the most feasible yet.

Lithium-air (Li-air) batteries have been around for a while — chemist K. M. Abraham is credited with developing the first rechargeable variant in 1995 — but they’ve never been considered very practical. That’s because they use carbon as an electron conductor instead of the metal-oxide found in conventional Li-ion batteries, and generate electricity from the reaction of oxygen molecules and lithium molecules, a process which leads to the production of electrically resistant lithium peroxide. As the lithium peroxide builds up, the power-producing reaction diminishes until it eventually ceases completely.

Related: Why batteries suck, and the new tech that might supercharge them.

Read more

Researchers create lithium-air battery that could be 10x more powerful than lithium-ion

A new lithium-air battery created by researchers at the University of Cambridge points the way to the ultimate battery packs of the future, its makers say. With a very high energy density, more than 90 percent efficiency and the capability for more than 2,000 recharge cycles, the new test battery could prove an important stepping stone in the development of this essential technology.

If you’re getting tired of announcements about breakthroughs in battery technology, that’s understandable: as they’re so essential to modern life, many teams of scientists are busy working on the problem around the clock, but it’s an incredibly complex area of chemistry. Any new battery has to improve on what we already have, be safe to use in consumer gadgets, and be commercially viable enough to be affordable for manufacturers.

Those are difficult targets to hit, and that’s why many ‘miracle’ batteries have since fallen by the wayside – once the initial lab work is done, proving concepts and scaling up production is very difficult to get right. The potential rewards are huge though, not just for smartphones but for electric cars and solar power, where batteries are essential for storing energy to use when the sun isn’t shining.

Read more

Mind Control Device Alters Emotions on Demand

Think of all the possibilities!


braincontrolMind control has been a topic of many great suspense and science fiction movies until recent. Now, an emotion altering device that will work in conjunction with a smart phone app is now being developed by Thync, and is slated for release to the public in 2015.

Thync announced on Oct. 8 that it’s raised $13 million from financial contributors to develop technology combining neuroscience and consumer electronics.

“This is an avenue for people to call up their best stuff on demand,” says Isy Goldwasser, Thync’s chief executive officer and co-founder. “It’s a way for us to overcome our basic limitation as people. It lets us call up our focus, our calm, and creativity when we need it.”

Read more

Acer is launching an electric all-terrain vehicle

Acer might be better-known for its range of laptops, tablets, phones, and similar consumer electronics, but it has quietly lifted the lid on a brand-new product line — an electric, all-terrain vehicle (eATV).

The Taiwanese tech titan unveiled the eATV “X Terran” (presumably that’s not meant to be ‘Terrain’) prototype at the eCarTech conference in Munich last week, but the company didn’t reveal too many details. We have, however, now obtained some photos of the vehicle.

Read more

‘Zeno effect’ verified—atoms won’t move while you watch

One of the oddest predictions of quantum theory – that a system can’t change while you’re watching it – has been confirmed in an experiment by Cornell physicists. Their work opens the door to a fundamentally new method to control and manipulate the quantum states of atoms and could lead to new kinds of sensors.

The experiments were performed in the Utracold Lab of Mukund Vengalattore, assistant professor of physics, who has established Cornell’s first program to study the physics of materials cooled to temperatures as low as .000000001 degree above absolute zero. The work is described in the Oct. 2 issue of the journal Physical Review Letters

Graduate students Yogesh Patil and Srivatsan K. Chakram created and cooled a gas of about a billion Rubidium atoms inside a vacuum chamber and suspended the mass between laser beams. In that state the atoms arrange in an orderly lattice just as they would in a crystalline solid.,But at such low temperatures, the atoms can “tunnel” from place to place in the lattice. The famous Heisenberg uncertainty principle says that the position and velocity of a particle interact. Temperature is a measure of a particle’s motion. Under extreme cold velocity is almost zero, so there is a lot of flexibility in position; when you observe them, atoms are as likely to be in one place in the lattice as another.

Read more

Haptics Technology: Soon, We Might Be Able To ‘Feel’ Cyberspace

Haptics is a growing field that aims to allow our bodies to control and ultimately ‘feel’ our virtual identity. Instead of using the theorized mechanism of a neural computer link, haptic tech attaches sensors and stimuli to our body. A report by research firm Markets and Markets thinks haptic technology, which could soon include something like a glove that let’s you move a hand in cyberspace, will be worth 30 billion by 2020.

Haptic technology, also known as kinesthetic communication, sounds like something out of science fiction. But products, like the vibrating cell phone, have been out for decades. And there’s more advanced systems on the way. That’s partly because of another hyped field: virtual reality. With pioneering virtual reality headsets like the Oculus Rift poised for release next year, the question becomes: How to make this experience even more immersive.

The tech is based on our sense of touch, a sensation that philosopher John Locke believed to be the most undeniable of all human senses. We believe something is real by touching it, a philosophy that haptic technology follows.

Read more

/* */