Toggle light / dark theme

Bacteriophages Could Be a Potential Game Changer in the Trajectory of Coronavirus Disease (COVID-19)

Bacteriophage can reduce bacterial growth in the lungs, limiting fluid build-up. This could decrease the mortality of patients affected by COVID-19, according to the peer-reviewed journal PHAGE: Therapy, Applications, and Research.

“The bacterial growth rate could potentially be reduced by the aerosol application of natural bacteriophages. These prey on the main species of bacteria known to cause respiratory failure,” says Marcin Wojewodzic, PhD, University of Birmingham (U.K.). Decreasing bacterial growth would also give the body more time to produce protective antibodies against the disease-causing coronavirus.

Used correctly, phages have an advantage here of being able to very specifically target the bacteria that cause secondary infections. They would remove the problematic bacterium but leave an otherwise fragile microbiome intact.” Martha Clokie, PhD, Editor-in-Chief of PHAGE and Professor of Microbiology, University of Leicester (U.K.)


The pandemic of the coronavirus disease (Covid-19) has caused the death of at least 270,000 people as of the 8th of May 2020. This work stresses the potential role of bacteriophages to decrease the mortality rate of patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The indirect cause of mortality in Covid-19 is miscommunication between the innate and adaptive immune systems, resulting in a failure to produce effective antibodies against the virus on time. Although further research is urgently needed, secondary bacterial infections in the respiratory system could potentially contribute to the high mortality rate observed among the elderly due to Covid-19. If bacterial growth, together with delayed production of antibodies, is a significant contributing factor to Covid-19’s mortality rate, then the additional time needed for the human body’s adaptive immune system to produce specific antibodies could be gained by reducing the bacterial growth rate in the respiratory system of a patient. Independently of that, the administration of synthetic antibodies against SARS-CoV-2 viruses could potentially decrease the viral load. The decrease of bacterial growth and the covalent binding of synthetic antibodies to viruses should further diminish the production of inflammatory fluids in the lungs of patients (the indirect cause of death). Although the first goal could potentially be achieved by antibiotics, I argue that other methods may be more effective or could be used together with antibiotics to decrease the growth rate of bacteria, and that respective clinical trials should be launched.

Both goals can be achieved by bacteriophages. The bacterial growth rate could potentially be reduced by the aerosol application of natural bacteriophages that prey on the main species of bacteria known to cause respiratory failure and should be harmless to a patient. Independently of that, synthetically changed bacteriophages could be used to quickly manufacture specific antibodies against SARS-CoV-2. This can be done via a Nobel Prize awarded technique called “phage display.” If it works, the patient is given extra time to produce their own specific antibodies against the SARS-CoV-2 virus and stop the damage caused by an excessive immunological reaction.

The coronavirus pandemic has caused the death of more than 270,000 people, as reported by 8th May 2020 by the World Health Organization (WHO). The crisis we observe is the joint effect of globalization and the properties of the new virus (SARS-CoV-2), which causes the disease, Covid-19. SARS-CoV-2 stands for “Severe Acute Respiratory Syndrome COronaVirus 2” describing one of the most dangerous symptoms in Covid-19. Although there have been past warnings of the threat that respiratory targeting viruses pose,1 the SARS-CoV-2 virus has spread at an unprecedented rate and it is devastating our health and economy globally. We urgently need multiple approaches to tackle this crisis.

Why Japanese Businesses Are So Good at Surviving Crises

On March 11, 2011, a 9.1-magnitude earthquake triggered a powerful tsunami, generating waves higher than 125 feet that ravaged the coast of Japan, particularly the Tohoku region of Honshu, the largest and most populous island in the country.nnNearly 16,000 people were killed, hundreds of thousands displaced, and millions left without electricity and water. Railways and roads were destroyed, and 383,000 buildings damaged—including a nuclear power plant that suffered a meltdown of three reactors, prompting widespread evacuations.nnIn lessons for today’s businesses deeply hit by pandemic and seismic culture shifts, it’s important to recognize that many of the Japanese companies in the Tohoku region continue to operate today, despite facing serious financial setbacks from the disaster. How did these businesses manage not only to survive, but thrive?nnOne reason, says Harvard Business School professor Hirotaka Takeuchi, was their dedication to responding to the needs of employees and the community first, all with the moral purpose of serving the common good. Less important for these companies, he says, was pursuing layoffs and other cost-cutting measures in the face of a crippled economy.nn


As demonstrated after the 2011 earthquake and tsunami, Japanese businesses have a unique capability for long-term survival. Hirotaka Takeuchi explains their strategy of investing in community over profits during turbulent times.

Space Launch System vs. SpaceX: Is the SLS a Waste of Money

Oftentimes, many argue that NASA’s Space Launch System is a waste of money because it is being delayed over and over again despite having such a large budget. In this video, I will examine whether this is the case or not.

Discord Link: https://discord.gg/brYJDEr
Patreon link: https://www.patreon.com/TheFuturistTom
Please follow our instagram at: https://www.instagram.com/the_futurist_tom
For business inquires, please contact [email protected]

Big Tech’s Backlash Is Just Starting

Worries about America’s tech stars have swirled for years. It’s clear now that this isn’t going away. In world capitals, courtrooms and among the public, we are wrestling with what it means for tech giants to have enormous influence on our lives, elections, economy and minds.


The congressional antitrust hearing showed that concerns about the tech stars aren’t going away.

U.S. banks are ‘swimming in money’ as deposits increase

It’s the banking world’s version of the rich getting richer.

A record $2 trillion surge in cash hit the deposit accounts of U.S. banks since the coronavirus first struck the U.S. in January, according to FDIC data.

The wall of money flowing into banks has no precedent in history: in April alone, deposits grew by $865 billion, more than the previous record for an entire year.

Fusion Energy Era: ITER Assembly Begins

Fusion: Future source of carbon-free, abundant, safe and economic energy; Leaders of EU, France, China, India, Japan, Korea, Russia & US make announcement together.

French President Emmanuel Macron and leaders from the European Union, China, India, Japan, Korea, Russia, and the United States declare the start of a new energy era today with the official start of the assembly of the world’s largest fusion device at ITER in Southern France.

The ITER machine, the world’s largest science project, is being assembled to replicate the fusion power of the Sun that provides light and warmth and enables life on Earth.

Alarm over discovery of hundreds of Chinese fishing vessels near Galápagos Islands

Ecuador has sounded the alarm after its navy discovered a huge fishing fleet of mostly Chinese-flagged vessels some 200 miles from the Galápagos Islands, the archipelago which inspired Charles Darwin’s theory of evolution.

About 260 ships are currently in international waters just outside a 188-mile wide exclusive economic zone around the island, but their presence has already raised the prospect of serious damage to the delicate marine ecosystem, said a former environment minister, Yolanda Kakabadse.

“This fleet’s size and aggressiveness against marine species is a big threat to the balance of species in the Galápagos,” she told the Guardian.

The World’s Supply Chain Isn’t Ready for a Covid-19 Vaccine

The industries that shepherd goods around the world on ships, planes and trucks acknowledge they aren’t ready to handle the challenges of shipping an eventual Covid-19 vaccine from drugmakers to billions of people.

Already stretched thin by the pandemic, freight companies face problems ranging from shrinking capacity on container ships and cargo aircraft to a lack of visibility on when a vaccine will arrive. Shippers have struggled for years to reduce cumbersome paperwork and upgrade old technology that, unless addressed soon, will slow the relay race to transport fragile vials of medicine in unprecedented quantities.

Making a vaccine quickly is hard enough but distributing one worldwide offers a host of other variables, and conflicting forces may work against the effort: The infrastructure powering the global economy is scaling down for a protracted downturn just as pharmaceutical companies need to scale up for the biggest and most consequential product launch in modern history.

UAE Mars mission: extraordinary feat shows how space exploration can benefit small nations

The nation has also generated significant additional value in logistics by creating new manufacturing capacities and know-how. There are already multiple businesses outside the realm of the space industry that have benefited from knowledge transfer. These are all typical impacts of a space mission.

But while that is where most studies of the value of space missions stop looking for impact, for the UAE this would miss a huge part of the picture. Ultimately, its Mars mission has generated transformative value in building capacity for a fundamentally different future national economy – one with a much stronger role for science and innovation.

Through a broad portfolio of programmes and initiatives, in just a few years the Hope mission has boosted the number of students enrolling in science degrees and helped create new graduate science degree pathways. It has also opened up new sources of funding for research and made science an attractive career.