Category: cyborgs – Page 59
But U.S. is not the only country engaged in human enhancement and transhumanism, as Russia and China are also in hot pursuit with exoskeletons, vaccines and brain implants. As this competition gains traction, one wonders what the future of their militaries may look like as human beings are steadily integrated with machines to become armies of iron man.
From the blog of Christina Lin at The Times of Israel.
Sarcos Robotics, a startup developing robots for industrial and defense applications, today nabbed $40 million in equity financing, bringing its total venture capital raised to nearly $100 million. The company plans to use the capital to commercialize its first full-body, self-powered product — the Guardian XO — ahead of an anticipated 2021 ship date.
According to a 2020 Grand View Research report, the exoskeleton market could be worth $4.2 billion by 2027. The firm sees adoption growing steeply in health care, where exoskeletons could address the increased prevalence of spinal cord injuries in industries like security, disaster recovery, infrastructure inspection and maintenance, maritime, oil and gas, and mining. The National SCI Statistical Center reported 17,730 new spinal cord injuries in 2019 in the U.S. alone.
Sarcos spun out from the University of Utah in 1983 and for years operated as a bioengineering research institution. By 2000, the lab had expanded into segments like animated film props, prostheses, and human-computer interfaces. A DARPA grant to develop a military exoskeleton steered Sarcos toward defense applications. After DARPA accepted Sarcos’ proposal in 2006, the company began developing prototypes and contracted with the U.S. Navy to pilot salvage robots.
The Teen With The Bionic Arms
Posted in cyborgs, transhumanism
The embryos, which were not allowed to develop past 28 days of age, move researchers a small step closer to perhaps growing human organs for medical transplant.
Every hour, six people in the United States are added to the national waiting list for organ transplants—and each day, 22 people on the list die waiting. In the U.S. alone, more than a hundred thousand people need heart transplants each year, but only about 2,000 receive one.
In response, researchers are working to artificially expand the organ supply. Some are trying to 3D print organs in the lab. Others are working on artificial, mechanical organs. And some are making chimeras—hybrids of two different species—in the hopes of growing human organs in pigs or sheep.
“We will not have an active exoskeleton with servomotors tomorrow, or even the day after tomorrow. That’s science fiction,” Sergei Smagluk, of the EO-1 design team told Russian newspaper RIA Novosti. He adds that as soon as a suitable power source is available, it will create a boom in exoskeleton development, one which his company is well-placed to lead.
While America’s ambitious attempts to build Iron Man-style powered armor are making little progress, Russia is already fielding modest but effective unpowered military exoskeletons.
It can lift a car or tow a truck, but the ultimate goal is to make mech racing a sport.
Humans will soon have new bodies that forever blur the line between the natural and synthetic worlds, says bionics designer Hugh Herr. In an unforgettable talk, he details “NeuroEmbodied Design,” a methodology for creating cyborg function that he’s developing at the MIT Media Lab, and shows us a future where we’ve augmented our bodies in a way that will redefine human potential — and, maybe, turn us into superheroes. “During the twilight years of this century, I believe humans will be unrecognizable in morphology and dynamics from what we are today,” Herr says. “Humanity will take flight and soar.”
Check out more TED Talks: http://www.ted.com
The TED Talks channel features the best talks and performances from the TED Conference, where the world’s leading thinkers and doers give the talk of their lives in 18 minutes (or less). Look for talks on Technology, Entertainment and Design — plus science, business, global issues, the arts and more.
Follow TED on Twitter: http://www.twitter.com/TEDTalks
Although true “cyborgs”—part human, part robotic beings—are science fiction, researchers are taking steps toward integrating electronics with the body. Such devices could monitor for tumor development or stand in for damaged tissues. But connecting electronics directly to human tissues in the body is a huge challenge. Now, a team is reporting new coatings for components that could help them more easily fit into this environment.
The researchers will present their results today at the American Chemical Society (ACS) Fall 2020 Virtual Meeting & Expo.
“We got the idea for this project because we were trying to interface rigid, inorganic microelectrodes with the brain, but brains are made out of organic, salty, live materials,” says David Martin, Ph.D., who led the study. “It wasn’t working well, so we thought there must be a better way.”
Singapore researchers have developed “electronic skin” capable of recreating a sense of touch, an innovation they hope will allow people with prosthetic limbs to detect objects, as well as feel texture, or even temperature and pain.
The device, dubbed ACES, or Asynchronous Coded Electronic Skin, is made up of 100 small sensors and is about 1 square centimeter (0.16 square inch) in size.
The researchers at the National University of Singapore say it can process information faster than the human nervous system, is able to recognise 20 to 30 different textures and can read Braille letters with more than 90% accuracy.